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Abstract

Due to the relative transparency of its embryos and larvae, the zebrafish is an ideal model organism for
bioimaging approaches in vertebrates. Novel microscope technologies allow the imaging of developmental
processes in unprecedented detail, and they enable the use of complex image-based read-outs for high-
throughput/high-content screening. Such applications can easily generate Terabytes of image data, the handling
and analysis of which becomes a major bottleneck in extracting the targeted information. Here, we describe the
current state of the art in computational image analysis in the zebrafish system. We discuss the challenges
encountered when handling high-content image data, especially with regard to data quality, annotation, and
storage. We survey methods for preprocessing image data for further analysis, and describe selected examples of
automated image analysis, including the tracking of cells during embryogenesis, heartbeat detection, identifi-
cation of dead embryos, recognition of tissues and anatomical landmarks, and quantification of behavioral
patterns of adult fish. We review recent examples for applications using such methods, such as the compre-
hensive analysis of cell lineages during early development, the generation of a three-dimensional brain atlas of
zebrafish larvae, and high-throughput drug screens based on movement patterns. Finally, we identify future
challenges for the zebrafish image analysis community, notably those concerning the compatibility of algorithms
and data formats for the assembly of modular analysis pipelines.

Introduction

Over the last 20 years, the zebrafish (Danio rerio) has
become one of the most important model organisms for

in vivo studies of vertebrates in biology, both in fundamental
research and for biomedical applications.1,2 The genetic sim-
ilarity between zebrafish and mammals, its small size, fast
development, cheap husbandry, and its relevance for repla-
cing mammals in animal testing make the zebrafish the model
of choice in a large range of research projects. Crucially, the
transparency of the embryos makes them amenable to deep
in vivo imaging. Further reasons for the attractiveness of the
model include the almost complete genome sequence
(www.sanger.ac.uk/Projects/D rerio/) and an ever-growing

number of transgenic and mutant fish lines, allowing detailed
in vivo studies of gene regulation and function.

These zebrafish characteristics are exploited to address
important questions in genetics, developmental biology, drug
discovery, toxicology, and biomedical research. Notably,
zebrafish models exist for a broad range of human diseases,
for example, cardiovascular diseases,3 cancer,4 or movement
disorders.5 Imaging approaches include three-dimensional
time lapse (3D + t) imaging of embryos by confocal or multi-
photon laser scanning microscopy, which generates different
signals for image analysis, including two-photon-excited
fluorescence, second harmonic generation (SHG), and third
harmonic generation (THG).6 Another technique used in
3D + t imaging is selective plane illumination microscopy
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(SPIM),7 which is also called light sheet fluorescence micro-
scopy (LSFM). In addition, video series are recorded to ob-
serve developmental or behavioral changes over longer
periods of time in larvae and adults. Stitched high-resolution
images, in which many high-resolution images with a small
field of view of the same object are fused, are employed to
observe features at cellular or subcellular resolution. Finally,
high-throughput studies require an analysis of the effects of
thousands of potential drugs or toxicants. With the use of
automated microscopes and robotic handling, high-through-
put screening (HTS) projects generate thousands of images,
leading to Terabytes of data. Consequently, there is an in-
creasing demand for automated image processing to generate
quantitative results and to avoid time-consuming manual
analyses. Most often, the required image analysis is far be-
yond the scope of commercially available solutions, such as
the built-in software of microscopes.

Therefore, the development of dedicated image processing
methods has become a serious bottleneck in the full exploi-
tation of the information contained in the acquired image sets.
Many custom-made and nongeneric solutions have been de-
veloped to answer specific questions. However, not all solu-
tions have been published, and transfer of the available
methods to other projects is sometimes difficult due to miss-
ing standardization and strong restrictions on input formats,
software tool deployment, and so on. Nevertheless, these
solutions have an enormous potential to support the analysis
of current and future image-based phenotypic studies and to
avoid parallel developments that tend to ‘‘reinvent the
wheel.’’

To promote a better integration of image analysis software
with microscopy imaging strategies, in particular in the con-
text of large-scale screening projects, it is crucial to compre-
hensively survey existing image analysis solutions and to rate
their potential for application to other problems. Furthermore,
one needs a better understanding of the requirements of both
biologists and computer scientists in image analysis that
should then guide how precisely data are acquired and ana-
lyzed. This would define, for example, a minimal raw data
quality that is necessary for image analysis, or set acceptable
error margins for biological feature detection. Clarifying such
issues would greatly benefit the design of future screens, of
the image analysis solutions, and of their interfaces. Finally, a
long-term goal would be the design of standardized work-
flows for data acquisition, data handling, image processing,
and data analysis, integrating many existing generic and
zebrafish-specific modules.

The aim of this survey paper is to support this networking
and sharing process by giving an overview of the state of the
art and by opening a discussion about future steps toward
these goals in both the zebrafish and the image processing
communities. First, Requirements for automated processing
of zebrafish imaging data section of this paper describes
requirements for automatic image processing of zebrafish
data, especially with regard to high-throughput applica-
tions. In State-of-the-art: methods and tools section, a survey
of existing methods, tools, and general standardization ac-
tivities in biological imaging is given, followed by an over-
view of tools in Available software and computation tools
section, and of recent applications in developmental biology,
physiology, pharmacology, and toxicology in Applications
based on automated image processing section. Finally,

we have Discussion: open questions and future trends
section.

Requirements for Automated Processing
of Zebrafish Imaging Data

Automated image analysis is not limited to any type of
microscopy or any kind of assay. Image processing is going to
revolutionize the way we perform and exploit microscopy
imaging in many ways. It will allow enormous gains in time,
reproducibility, and objectivity of the results; enable the full
exploitation of the information in the raw data; and make
them amenable to further statistical or modeling studies.
Simple two-dimensional (2D) data acquired in epi-
fluorescence can be subjected to image analysis as well as
3D + t data from multiphoton or SPIM microscopy or high-
throughput 3D data from phenotypic drug screening. Thus,
the requirements of the zebrafish community for automated
processing of imaging data are not confined to any particular
application. However, high-throughput assays cannot even
be designed without strict standardization—often implying
robotization—and image processing. In this section, we,
therefore, focus on the requirements of the community to
perform -scale screening assays.

Pipelining high-throughput assays

The concept of HTS means automating all the steps of the
assays, building complete workflows comprising fish breed-
ing, specimen handling, mounting, treatment with substances
(e.g., toxicants or drug candidates), or other conditions (e.g.,
light or temperature pulses), automated microscopy imaging,
data management, image processing, and evaluation of the
results (Fig. 1).

The type of assay and workflow to be designed depends on
the biological question; for example, toxicological effect on
cells, embryos, larvae, adult fish, drug-specific phenotypic
effects at the cellular or subcellular level, and mutants ex-
hibiting behavioral changes as larvae or adult fish. Some
typical readouts for such questions could be as follows:

� place preference, swimming speed,
� detection of embryonic lethality,
� morphological changes in embryos/larvae,
� changes in reporter gene expression in embryos/larvae,
� the number of labeled cells in specific tissues, and
� movement of cells and tissues in 3D + t imaging.

Given this diversity of assays and readouts, the corre-
sponding requirements in terms of specimen manipulation,
imaging, data management, and image processing are equally
diverse: Thus, data acquisition can employ 2D, 3D, or 3D + t
imaging on either fixed or live specimens, from one-cell stage
to adults, cell cultures, or tissue explants, observed at different
levels of organization ranging from the molecular level to the
whole organism interacting with its environment. Once
the context of the experiment has been chosen, the design of
the imaging protocol needs to be adapted to the expected
results and to the requirements for image processing.

The spatiotemporal resolution of the acquired images, the
field of view, the signal-to-noise ratio (SNR), and the survival
or stability of specimens under the assay conditions are cru-
cial parameters. Thus, one main point is to choose imaging
conditions according to the size of the smallest structures that
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need to be separated. The resolution required in the x-, y-, and
z-direction needs to be defined, as well as the size of the
volume that needs to be explored. Sometimes, a single z-plane
may be sufficient, but at least a few z-slices are needed if one
wants to generate a reconstructed focused 2D image of a
specimen via postprocessing of focus planes. Many z-slices
are needed for a full reconstruction of 3D structures with laser
scanning microscopy or SPIM. In addition, the SNR and the
dynamic range of the image are relevant to define the reso-
lution of gray values. The influence of other disturbances (e.g.,
external light sources) should be negligible. Furthermore, the
temporal resolution of image acquisition needs to fit the scale
of the events that need to be followed. For instance, short time
intervals are needed for a quasi-static imaging for cell track-
ing, fish tracking, or heartbeat detection; while longer inter-
vals are sufficient to quantify temporal changes of defined
morphological parameters. Sometimes, difficult compromises
regarding various trade-offs between the parameters have to
be found in order to reach the aim of the assay. For example, in
3D + t imaging, increasing the image resolution will usually
reduce the achievable temporal resolution.

In total, the following parameters have to be defined:

� G: number of bytes that describe gray values per pixel
(usually defined by the cameras or microscopes, where 1
byte corresponds to 28 = 256 gray values),

� X * Y: image size in pixels (usually defined by the
cameras or microscopes),

� Z: number of slices in z-direction,
� C: number of acquired brightfield, fluorescent, or other

signal channels,
� T: number of time points,
� D: number of different treatments combined in an ex-

periment (e.g., to investigate the effects of different
drugs or toxicants for single or multiple dilutions on
wildtype fish, mutants, or transgenic lines), and

� N: number of fish for each treatment or combination of
treatments.

As a first approximation, such an experiment generates a
dataset with a total size of P acquired pixels:

P¼G � X � Y � Z � C � T �D �N ð1Þ

(assuming identical values of G, X, Y, Z, C, T, and N for each
treatment combination and assuming one fish per image).

Automatic analysis is especially useful for experiments with
large T, D, and N. Simple screens typically generate only a few
Gigabytes (e.g., G = 1 resulting in 256 gray values, X = Y = 1024,

C = 3 channels, Z = 1, T = 1, D = 100 drugs, N = 8 fish per drug;
P = 2.5 GB) that can be easily handled on a local hard disk. In
contrast, larger 3D + t screens (Z >> 1, T >> 1) can produce data
sizes of many Terabytes of data, for example, G = 2 resulting in
65536 gray values, X = Y = 4096, C = 2, Z = 500 slices, T = 300,
D = 5 drugs, N = 8 fish per drug; P = 402 TB. Such screens have
stronger demands in terms of data management, as discussed
in Data management requirements section.

The possibility to perform automated image analysis relies
on a number of a priori conditions. Images should be acquired
in a standard image format that can be directly processed by
many image processing tools or should be easily converted
into other standard formats. An experienced observer should
be able to manually extract the targeted biological information
from the acquired images. The methodology of analysis de-
veloped by this experienced observer should be transferable
into an automatic algorithmic strategy. Image processing
algorithms are expected to extract the desired biological
information with acceptable error rates. In principle, these
algorithms should offer a compromise between accuracy,
development time, resource efficiency with regard to memory
usage and computing time, robustness against variations in
images due to disturbances or noise, standardization aspects,
and generalization abilities. The algorithms should run in
a reasonable computing time on commercially available
computers.

Metadata requirements

All images should be described by so-called metadata, ex-
plaining the spatiotemporal position of the image, acquisition
details, and all the experimental conditions that are relevant
for the study in a computer-readable form (e.g., coded in text
or extensible markup language [XML] files, filenames, and
directory names). These metadata should be sufficient to re-
peat the experiment.

Data without metadata are useless, particularly if the data
have to be stored over a long period of time or are processed
through various processing steps. The role of metadata be-
comes even more important with the reinforcement of
quality control rules that ask for data availability over more
than a decade. The needs for common and sustainable data
formats, including metadata, are well accepted in the com-
munity of biologists, but existing metadata standards and
exchange protocols such as Open Archive Initiative Protocol
for Metadata Handling (OAI-PMH)9 or for other types of
experiments (see the overview by Taylor et al.10) have not yet
been disseminated.

FIG. 1. A typical workflow
for HTS with the zebrafish as
a model organism (modified
from Alshut et al.8).
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The complete protocol, including acquisition conditions of
all images, should be clearly defined to guarantee reproduc-
ible experiments and to avoid image analysis bias.11 It should
include, for example, information about the number of fish,
fish strains, anesthetization, mounting conditions, age, state
(hatched, dechorionated or in chorion), imaging parameters,
microscopy setup parameters, light source characteristics
(including power intensity), and so on. Defining the appro-
priate annotation framework, linking it to the data, as well as
processing and analyzing it are issues that deserve careful
attention and should be placed high on the agenda of the
zebrafish imaging community.

Data management requirements

Managing and handling the data deluge produced by
automated microscopes requires totally new methods and
technologies. For example, in only 10 h, an SPIM observing
the development of a zebrafish embryo may produce 7 TB of
raw data, resulting in an average data rate of 200 MB/s be-
fore compression. Such data rates can be easily handled in
state-of-the-art data acquisition computers that are equip-
ped with a RAID-10 storage system.12 However, storage of
the results produced in 5 days will require a total of 105 TB
disk space in this data acquisition computer, resulting in
high costs and a high failure probability. Therefore, close
collaborations with data centers are mandatory to handle the
raw data. Data centers will support the data, producing
scientists in all fields of large-scale data management and
processing, from data transfer to long-term archiving of the
data (Fig. 2).

Complex data processing on the data acquisition computer
is often not feasible, as the amount of data streams limits the
overall throughput. Special data-intensive computing envi-
ronments that are able to process Terabytes of data in minutes
are required but often not available locally. Thus, data pro-
cessing and analysis workflows should run on the infra-
structure of available data centers. Modern data centers can be
accessed from distributed distant sites, allowing workflows to
start automatically after a dataset is integrated into the sys-
tem.13 Transferring the ‘‘preprocessed’’ data, which are now
fitting into well-accepted standard data and metadata for-

mats, to such data centers requires data lines and software
systems that are capable of reaching the required data rates.

Easy and fast access to the raw data itself, to the processed
data, and to the metadata is essential for further scientific
evaluation of what has been produced. Teams of scientists
distributed over many locations need to exchange their data,
either raw or processed, as well as their scientific results. Such
data sharing and networking of communities within their
digital campus will likely be a crucial part of the scientific
infrastructure in the future.

State-of-the-Art: Methods and Tools

Concepts for automated processing of biological images

After describing general requirements for the use of auto-
mated image analysis in high-throughput screens and other
data-intensive imaging applications, we now turn to a more
detailed description of the methods and tools that are avail-
able for automated image processing. The major issue that we
want to address here is the adaptation of the image data to its
processing pipeline and vice versa. Adequate formats and
processes will require a close interdisciplinary collaboration
between biologists and computer scientists relying on shared
expertise and practice.

In the next few sections, image processing methods are
subdivided according to the anatomical level of analysis, di-
mensionality, and type of data to be processed.

‘‘Level’’ describes if the analyzed objects are

� whole organisms (adult fish, larvae or embryos),
� organs or tissues, or
� cells.

‘‘Dimension’’ is related to the captured images in the da-
taset described by Equation (1). Most methods and applica-
tions can be categorized by

� 2D: two dimensional with X and Y >> 0,
� 2D + t: two dimensional with an additional time re-

cording in form of video images with X, Y, and T >> 0
(where T is the total number of time points, and t in-
dicates the temporal dimension of the data),

FIG. 2. Data workflow in a
large high-throughput screen.
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� 3D: three dimensional describing spatial configurations
in detail with X, Y, and Z >> 0,

� 3D + t: time recordings of spatial configurations with X,
Y, Z, and T >> 0.

In most cases, applications with only a few spatial slices
(typically Z = 2.10) are mapped by preprocessing methods,
for example, by generating an extended focus, to 2D images.
Applications with a few fluorescence (or other signal)
channels (typically C = 2.3) or time points (typically
T = 2.3) are analyzed separately by such 2D methods, or by
3D methods if Z >> 0. In this context, also data of simple
bioluminescence/fluorescence readers or of cell counters can
be interpreted as a kind of degenerated images with the di-
mension 2D + t, 2D, or even 1D + t. Here, time series of cells or
larvae passing through a bioluminescence/fluorescence
sensor are analyzed.

An overview about method-oriented versus application-
oriented papers using these categorizations and further aspects,
including fish age and number, algorithm and application focus,
as well as used tools, is given in Table 1. This list can also be
found in the Excel table zip_tools.xls in the additional material.
Regularly updated versions of this list will be available at
(http://sourceforge.net/projects/zebrafishimage/).

Based on the ‘‘type of data’’ processed, image processing
methods can be divided into two types:

� Preprocessing methods deliver ‘‘better’’ raw data. Ty-
pical tasks, with increasing complexity, are noise re-
duction, correction of attenuation (the gradual loss in
light intensity when passing through tissues), correction
of inhomogeneous illumination, stitching of mosaic
images, extended focus algorithms to fuse z-slices with
different focus planes to a focused 2D image, and so on.
Such methods are usually application independent and
can be found in many image processing toolboxes.

� Analysis methods extract biologically relevant infor-
mation from the images. These methods include differ-
ent operations to find object boundaries, such as for cells
or tissues, to compute features such as brightness and
shape parameters, to fuse segments (or patterns) from
different fluorescent channels (or other signals) or from
different specimens into one reference view over time,
and to track segments (i.e., objects) over time. Such
operations can be application independent (many seg-
mentation operations) or adapted to fish-specific char-
acteristics (tissue detection, landmark-based fusion of
data from different specimens etc.).

Image processing algorithms consist of pipelines of many
single image operations, including preprocessing and analy-
sis methods with problem-adapted parameters. We now
discuss a few examples of different methods that are applied
to specific zebrafish imaging problems.

Preprocessing methods

The goal of preprocessing methods is to provide ‘‘better’’
raw data quality, which means usually the compensation of
known limitations of the image acquisition process. It should
be noted that ‘‘better’’ here does not mean ‘‘looking nicer,’’ but
rather ‘‘better suited for the automated extraction of quanti-
tative information.’’ Three main principles can be used for
preprocessing:

(1) Previous knowledge about the imaging process may
reveal typical patterns of out-of-focus signal contrib-
uting to a focus plane or of deformations of the signal
shape. An example for preprocessing methods cor-
recting such problems are deconvolution techniques.
These techniques reduce the blur that is introduced
from the microscope optics, using a mathematical
model of the imaging process.

(2) Assumptions about the structures in the image. De-
noising techniques, for example, can reduce noise by
assuming that certain pixel patterns or structures are
more likely than others in a noise-free image. For in-
stance, Luengo-Oroz et al.52 proposed a multidi-
mensional (3D + time) filter that uses the inherent
redundancy of the temporal dimension to improve the
membrane delineation in all directions (Fig. 3A).

(3) Fusion of multiple recordings of the same sample by
applying assumptions about imaging process and
structures in the image. Several methods apply this
principle.

High dynamic range (HDR) techniques increase the dy-
namic range of an image by fusion of two or more recordings
with different illumination times or laser intensities. The dy-
namic range of an imaging system is described by dividing
the largest possible gray value (before overexposure) by the
lowest possible gray value above zero or above the noise level.
In a study by Ronneberger et al.,63 this technique was used to
improve signal quality in confocal stack recordings extending
over the whole depth (400 lm) of the larval brain (see Fig. 4 for
an example).

Stitching76 allows one to increase the field of view without
decreasing the resolution by fusing multiple recordings taken
at different positions (tiles, see frontal and rear parts in Fig.
5A). An example for this from neuroscience is the tracking of
axons extending over an anatomical area that covers several
fields of view.69

Finally, Multi-View Fusion increases the resolution in the
axial direction (e.g., fusion of multiple views in light sheet
microscopy.70,77,78 For example, Rubio-Guivernau et al.64

proposed a wavelet-based method to combine the informa-
tion from multiple views in a single volume (Fig. 3B). Fusion
can also compensate for the light attenuation in thick samples
by integrating two recordings that are taken from opposite
sides (two view attenuation correction, see Fig. 5A, dorsal and
ventral parts).63

As an example, a combination of the three techniques (HDR,
stitching, and two-view attenuation correction) was used to
record the full brain of 2–4-day old zebrafish larvae at cellular
resolution with a standard confocal microscope (Fig. 5).63

Methods for image data analysis

Fish tracking, behavior patterns, and social behav-
ior. Various approaches have been proposed to automati-
cally extract movement of adult fish or hatched larvae as well
as other behavioral parameters using automated video anal-
ysis in different experimental settings. The targeted para-
meters were, for example, velocity, total distance traveled, or
inter-fish distance for social behavior analysis, and had to be
extracted from data acquired, for example, in wells or Petri
dishes (2D + t), in tanks with one camera (2D + t), or with two
cameras for a 3D reconstruction (3D + t).19 However, some of
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these analyses are based on commercial instruments whose
image analysis algorithms are not published, making them
potentially difficult to adapt to specific needs. To circumvent
such problems, an open source solution for academic use for
the video analysis of zebrafish larvae in multiwell plates was
proposed by Cario.21

Approaches for adult fish or hatched larvae are not easily
transferable to quantify the movements of embryos in their
chorion, because movements in the chorion are restricted to
rotations. Thus, alternative approaches were proposed that
compute gray-value changes between two subsequent video
frames in whole wells14 or lines inside wells.42

Heartbeat detection. Image-based heartbeat detection of
zebrafish is a key task in the analysis of side-effects of drugs
and in the definition of toxicological endpoints. All ap-

proaches targeting this parameter defined one or more re-
gions of interest (ROI), for example, heart, atrium, or ventricle.
In these ROIs, changes in heart position or blood flow based
on 2D + t data are analyzed. Here, different levels of detail
were discussed, including a simple yes-no-decision (‘‘beating’’
or not), a quantification of heartbeat frequency67 and an ad-
ditional detection of details such as systolic and diastolic di-
ameters, percent of fractional shortening, or velocity of the
contraction wave.31,56,57 A main problem for live imaging in
the zebrafish is the current requirement for immobilization
(achieved for example by mechanical constraint in agarose
gels57 and anesthesia67). Since immobilization and anesthesia
may affect heart rate frequency in these tests, future efforts
may be necessary to be able to quantify the zebrafish heart-
beat without significant perturbations compared with the
normal zebrafish behavior or waking state.

FIG. 3. (A) Cross-sections of a zebrafish embryo image filtered following the approach by Luengo-Oroz52. Left: Cross-sections
of the original image. Right: Cross-sections of the image filtered by an enhancing (3D + time) multidirectional method. (B)
Rendering of the fusion of five light sheet fluorescence microscopy views acquired for a zebrafish embryo using the wavelet
approach by Rubio-Guivernau et al.64 Renderings of the individual views are shown in a smaller scale around the fusion. Color
images available online at www.liebertpub.com/zeb

FIG. 4. High dynamic range (HDR) fusion. Upper panels: Raw and processed images. Lower panels: Gray value profile extracted
along the blue line (corresponding positions marked by red arrows in (A) and (B)). (A) Recording with low laser intensity. No over-
exposure, but partially bad signal-to-noise-ratio (SNR). (B) Recording with high laser intensity. Partial over-exposure (highlighted in
red), but good SNR. (C) After HDR fusion: no over-exposure, good SNR. Color images available online at www.liebertpub.com/zeb

AUTOMATED PROCESSING OF ZEBRAFISH IMAGING DATA: A SURVEY 9



Phenotype assessment by detection of cells and of tissue
patterns. Phenotype assessment by robust pattern recogni-
tion is crucial to come up with metrics for the characterization
of how the zebrafish system responds to perturbations/
stimuli at all levels of observation. These patterns may include
morphology of the embryo or of certain tissues, as well as
changes in reporter gene expression.

Stern et al.68 proposed an approach to automatically de-
tect specific features of interest in 2D microscopy images
with the aim of performing automatic morphometric mea-
surements in the context of zebrafish developmental and
toxicological studies. A supervised learning approach was
followed, in which images were first manually annotated by
experts using the CYTOMINE (Cytology and histology im-
age analysis) platform to localize features of interest. The
images and their annotations were then automatically
exploited for the training of models, which should assess the
existence of similar features in new, unseen images. The
approach first extracts subwindows (or patches) around
points of interest and at other, randomly chosen positions
within images. These patches are then described by various
visual features. Next, either a classification or a regression
model (using extremely randomized decision trees) is built
to recognize the points of interest. The model is subse-
quently applied to new images to predict the localization of
similar points and to extract morphometric measurements
(i.e., distances and angles). Importantly, the same learning-
based approach can be applied to different imaging mo-
dalities (e.g., alcian blue staining of cartilage, alizarin red
staining of bone).

Applying similar approaches, different algorithms for the
automatic classification of embryonic defects in 2D were

proposed.8,15,37,79 All of them rely on supervised machine
learning, that is, experts first collected training examples of
embryonic defects that are then used to train classification
models. Liu used six image descriptors for color and texture
combined with a support vector machine to recognize three
basic phenotypes (i.e., hatched, unhatched, and dead).79

Jeanray et al.37 computed pixel-based image descriptors and
extremely randomized trees to recognize basic phenotypes
and more subtle ones such as pericardial edema and curved
tails. Alshut et al.8,15 extracted embryos from images of a
microtiter plate well, excluded invalid wells, and detected
dead embryos based on the identification of dark regions
(Fig. 6).

Automated pattern recognition was also employed for the
spatial detection of reporter gene expression driven by vari-
ous enhancer–promoter combinations in multiple tissues.32

This was achieved with the development of a high-through-
put pipeline for image acquisition and analysis in thousands
of fish embryos. The analysis method first automatically de-
tects the embryo outlines, then performs orientation and
warping of experimental embryos onto a 2D reference shape,
and finally quantifies fluorescence signals (pixel intensities) in
presegmented domains of the embryo corresponding to dif-
ferent tissues, such as heart or neural tube.

Phenotype detection can also be performed with regard to
the specific pattern of a group of cells. This includes, for ex-
ample, counting, localization, and pattern detection of a few
cells in specific tissues or in specific locations. This is relevant,
for example, to analyze patterns of leukocytes in inflamma-
tion arrays.73 In principle, the precise definition of these
patterns is application dependent and can be defined in rule-
based scripts such as, for example, in MATLAB.

FIG. 5. Image analysis in
ViBE-Z: (A) Stitching and
multi-view fusion with atten-
uation correction creates a
high-quality data set of a
72 hpf zebrafish larva. (B)
Automated landmark detec-
tion. (C) Landmark-initial-
ized elastic registration of
subject (green) to the refer-
ence brain (magenta). Color
images available online at
www.liebertpub.com/zeb

10 MIKUT ET AL.



In yet another set of applications, landmark recognition,
pattern segmentation, and registration (mapping to a refer-
ence brain) are combined to build 3D atlases of protein and
gene expression.

Ronneberger et al.63 developed the Virtual Brain Explorer
for Zebrafish (ViBE-Z) to enable a highly precise mapping of
3D gene expression patterns to stage-specific reference brains,
which is currently implemented for 2-, 3-, and 4 day-old lar-
vae. After preprocessing of the image data (Fig. 5A), ViBE-Z
uses a trainable landmark detection algorithm on a reference
staining to identify certain landmarks (Fig. 5B). For the an-
atomical reference staining, two types of stains have been
used so far: dye labeling of all cell nuclei or anti-acetylated
tubulin antibody stain of axon tracts, with each providing
sufficient 3D information to accomplish landmark detection.
Then, ViBE-Z performs a landmark-initialized elastic regis-
tration of the analyzed specimens onto the reference larva
(Fig. 5C). The expression pattern that is to be mapped is
transformed accordingly and stored in the database. The
whole system is available through a web interface, allowing
any user to transform newly recorded expression patterns to
this reference.

Cell nuclei and membrane detection, cell tracking and
lineage reconstruction. Modern 3D microscopy enables the
recording of 3D + t images of developing zebrafish embryos at
the cellular level, with a temporal resolution that is high en-
ough to track labeled cell nuclei and to identify cell divisions,
which allows for the reconstruction of the clonal history of the
cells in the embryo. In addition to cell nuclei, cell membranes

can be labeled with a second dye and recorded in another
channel, which (1) enables the analysis of morphological
changes of the cells during development and (2) provides
boundary conditions for the labeled nuclei, increasing the fi-
delity of nuclear segmentation and tracking.

Whole-organism labeling leads to a complex task of image
processing that is further complicated by the limitations in
SNRs in fluorescence imaging. In addition, temporal resolu-
tion in the most commonly used microscopy setups (e.g.,
confocal or two-photon microscopy) is rather low, making
checks for fidelity in segmentation and tracking very de-
manding. Recent overviews about this special field are given
by Hockendorf et al.80 with a focus on zebrafish embryogen-
esis and by Meijering et al.81 with a focus on generic 2D + t and
3D + t tracking methods and related software tools.

The first step in automated cell tracking is a robust 3D
detection of cell nuclei using cell shape information. Fur-
thermore, nuclei detection at the time of mitosis is essential
for the identification of cell divisions and subsequent track-
ing of the daughter cells.18,49,50,55 Capturing all the features
of shape changes of the nucleus at the time of cell division
requires a temporal resolution on the scale of minutes, as
mitosis proceeds rather rapidly. Reconstructing a full or even
partial cell lineage from fluorescently labeled nuclei data is a
first important goal.41,48,58 The deployment of the cell lineage
in space and time is the basis for major biological insights,
including the identification of the polyclonal origin of or-
gans, the spatial dispersion of cell clones, the rate of prolif-
eration along the lineage, and regularities in the orientation
of division planes.30

FIG. 6. Example for a phe-
notype recognition screen in-
cluding (A) a sample image of
a living embryo in a microtiter
plate well, (B) a sample image
of a dead embryo, (C) three
examples for living and dead
(necrotic) embryos in different
orientations and after extrac-
tion from the well image, (D)
the result of image processing
and evaluation based on fea-
tures automatically extracted
from the images. The y-axis
gives values for the center of
mass of the gray value histo-
gram, and the x-axis indicates
the mean intensity value in
the chorion center. These two
values allow an almost error-
free classification. Each
plotted symbol indicates a
necrotic (‘‘coagulated,’’ red
points) or living (‘‘alive,’’ green
circles) embryo as evaluated
by manual annotation. The
gray line gives the cut-off line
separating fields for auto-
mated classification of ne-
crotic and live embryos.15

Color images available online
at www.liebertpub.com/zeb
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An analysis pipeline specifically geared toward the re-
construction of early Zebrafish embryogenesis up to the
1024 cells stage was presented by Luengo-Oroz et al.51 It
relies on recordings from multiharmonic microscopy, which
allows imaging mitotic spindles (SHG) and cell contours
(THG) in an unstained specimen (Fig. 7A). The pipeline
produces a full cell lineage after integrating the mitosis
detection from the SHG channel with the membrane seg-
mentation from THG channel using a viscous watershed
algorithm (Fig. 7B, C).

Another approach for the analysis and reconstruction of
zebrafish embryogenesis at later developmental stages
(several thousands of cells) was given by Bourgine.18 The
authors developed and tested methods of nonlinear diffu-
sion filtering, nuclei center detection, nuclei and membrane
image segmentation, whole embryo segmentation, and mi-
tosis detection using data produced by the BioEmergences
platform (http://bioemergences.iscpif.fr), which then served
to design the image processing workflow of the platform. In
addition to lineage tracing, image processing with the plat-
form revealed cell cycle lengthening during early brain de-
velopment (Fig. 8).

The development of robust cell tracking algorithms with
minimal error rates remains a challenge. An original contri-
bution to the field82 uses 3D + t image segmentation and ex-

traction of cell trajectories as centerlines of segmented 3D + t
tubular structures. The analysis by Luengo-Oroz et al.52 also
exploits temporal coherence processing and simultaneously
the spatiotemporal dimensions using 3D + t morphological
operators. The authors applied this technique to cell tracking,
identifying the cell trajectory as a single 4D (3D + t) object,
and to the topological description of spatiotemporal gene
expression.

Attempts to achieve exhaustive cell tracking from ubiq-
uitously labeled nuclei lead to limited accuracy. It is now
clear that, to improve the tracking outcome, image com-
plexity needs to be decreased when cells are densely packed
in a tissue. A number of strategies have been described that
produce mosaic staining, including transplantation of la-
beled cells, or random genetic recombination such as in the
so-called ‘‘brainbow’’ transgenic lines.83 Alternatively,
Photoconvertible Optical Tracking (PhOTO) transgenic
lines enable genetically encoded global and targeted cell
labeling for lineage tracing applications throughout the
lifetime of the zebrafish. These transgenic lines allow tar-
geted Photoconvertible Optical Tracking Of Nuclei (PhO-
TO-N) and Membranes (PhOTO-M) with high SNR ratio
and are especially well suited for monitoring slow-dividing
populations of cells (e.g., stem cells) during regenerative
processes.29

FIG. 7. Reconstruction of zebrafish early embryonic development from multiharmonic imaging data. (A) Top: three or-
thogonal views of an original dataset combining third harmonic generation (THG; blue) and second harmonic generation
(SHG; green). Bottom: THG and SHG details. (B) Cell segmentation after application of a viscous watershed algorithm. Top:
viscous filtering applied to the original SHG image. Bottom: resultant cell segmentation. (C) The SHG channel is used to
identify cell mitosis, and the integration with the cell segmentation enables cell linage reconstruction (top) and the repre-
sentation of the spatial deployment of the cell lineage tree (bottom). (A, B) are partly from Luengo-Oroz et al.51 and (C) from
Olivier et al.,58 reprinted with permission. Color images available online at www.liebertpub.com/zeb
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With the same objective of improving cell and tissue la-
beling, another line of research explores strategies that are
alternative to fluorescent staining. As the zebrafish develops,
increased light scattering due to tissue depth, tissue auto-
fluorescence, and light absorption by pigment cells can make
fluorescence imaging challenging, especially when perform-
ing deep-tissue imaging experiments. SHG nanoprobes may
circumvent some of these problems. SHG nanoprobes are
nontoxic nanomaterials that take advantage of the nonlinear

optical phenomenon of SHG to produce contrast. Recent
publications84,85 have used these nanomaterials for high-
contrast labeling in vivo during early zebrafish development.
Their nonphototoxic and nonbleaching signal makes them
prime candidates for long-term cell labeling and visualization
in space and time.

Image processing for fully automated zebrafish handling
pipelines. Large-scale screening projects require, in addi-
tion to imaging data management, the automation of
complete screening pipelines, including mechanical han-
dling of fish, substances, and image acquisition. Relatively
simple real-time image processing routines are applied to
support, for example, automated sorting or selective image
acquisition. Examples include the development of flow-
based systems for high-throughput imaging and laser
microsurgery of larvae ‘‘on the fly,’’59 workflows for the
automatic injection of bacteria into the yolk,22 image-based
sorting robots,33,61 a screening platform with automated
manipulation of zebrafish including orienting and posi-
tioning regions of interest within the microscope’s field of
view,25 and automated zooming into ROI for heartbeat
detection.67

Available Software and Computation Tools

Computer scientists involved in image processing research
often rely on scientific computing environments (e.g., MAT-
LAB, SciPy, or OpenCV) for prototyping and evaluation of
their algorithms. However, the challenges of bioimage anal-
ysis and the need for better software applicability motivated
the development of novel tools that could be subdivided into
generic tools (not specialized to zebrafish) and specific zebra-
fish tools.

A complete list of these tools, including WWW links and
short descriptions, can be found in the Excel table zip_
tools.xls in the additional material. An updated version of this
list will be later available at (http://sourceforge.net/projects/
zebrafishimage/).

Generic tools

We provide next a nonexhaustive list (in alphabetical
order) of generic bioimage analysis tools (for more detailed
descriptions, see the survey paper of Eliceiri et al.86). Although
not primarily developed for zebrafish imaging data, these
tools might be re-used or tailored to answer specific zebrafish
biological questions; see, for example:

� BioImageXD87: a 3D visualization and analysis tool
using processing pipelines,

� Bisque88: a database for the exchange and exploration of
biological image data,

� CellProfiler89: a software to measure phenotypes in cell
and noncell images,

� CYTOMINE90: a rich Internet application that allows
data visualization remotely. It enables collaborative
annotations, data sharing, and analyses of large
( > Gigabyte) biomedical images on the web. It is based
on generic design principles and machine learning
methods that could be used for various tasks (including
assessing pathologies in silico, and zebrafish develop-
mental and toxicological studies),

FIG. 8. Automated cell lineage reconstruction and cell cycle
length analysis in the presumptive zebrafish brain. (A) Ani-
mal pole view of the zebrafish brain by early somitogenesis.
Anterior is bottom right and posterior top left. Cell trajec-
tories in the forebrain and midbrain are assessed through
the processing of a 3D + time image data set with a mosaic
staining obtained through the transplantation of cells with
red and green nuclei into a host embryo with green nuclei.
The complete cell lineage of the ‘‘red nuclei’’ population has
been reconstructed. Reconstructed and raw data (in white)
are superimposed with the Mov-IT visualization interface.
Red lines mark cell trajectories throughout the whole spa-
tiotemporal sequence. Blue cubes indicate the approximate
center of nuclei. Scale bar is 100 lm (B). Similar to data as in
(A), each dot indicates a cell division observed at a given
developmental time (in hours postfertilization at 26�C), and
is plotted as a function of the time elapsed since its birth
through its mother’s division. The cell cycle lengthens line-
arly (in min) from 2 to 5 h. The data set and tracking iden-
tification numbers are indicated top right. This information is
a part of the metadata of the experiment (BioEmergences
platform, unpublished). Color images available online at
www.liebertpub.com/zeb
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� Definiens (Definiens AG): a commercial image proces-
sing package for a rule-based design of pipelines,

� EthoVision (Noldus): a commercial package for the
tracking of animals with many applications to zebra-
fish,

� Gait-CAD91: a MATLAB-based toolbox for image pro-
cessing, tracking, and integrated data mining,

� Icy92: a platform for image analysis,
� ImageJ: the pioneer in bioimage analysis. Newer vari-

ants: ImageJ2/Fiji,93

� ITK/VTK: an open-source segmentation and registra-
tion toolkit for multidimensional imaging data,

� ilastik94: an interactive image classification and seg-
mentation toolkit using machine learning,

� Knime95: a workflow system for data analysis and
image processing,

� Labview (National Instruments Corp.): a commercial lab
automation tool with a focus on real-time processing,
including modules for image processing,

� MATLAB (Mathworks Inc.): a commercial mathematical
tool with script-based programming and a large variety
of additional libraries, including image processing,

� OMERO96: a client–server software for visualization,
management, and analysis of biological microscope
images.

After extraction of features and time series from images and
videos, further evaluation and processing steps can be done
using statistics tools or data mining tools.97

Specific tools for application to the zebrafish model

Another group of tools has been developed specifically for
zebrafish image analysis tasks. It includes stand-alone soft-
ware tools and web services, add-ons for generic tools, and
image processing algorithms that are integrated into complete
screening systems:

� DanioVision (Noldus, Inc.): an integrated commercial
system for the tracking of zebrafish larvae,

� DeltR48: an automated pipeline for analysis of time-re-
solved LSFM images of zebrafish embryogenesis,

� IN Cell Investigator Zebrafish Analysis Plug-In (GE
Healthcare Life Sciences): an add-on for the commercial
IN Cell system containing preconfigured analysis
modules for >50 assays and applications,

� LSRTrack21: a MATLAB add-one for tracking of zebra-
fish larvae (free for academic use),

� ViBE-Z63: a free web-based image analysis framework
for virtual colocalization studies in larval zebrafish
brains in 3D,

� Zebrabox, Zebralab, Zebrafish Cubicle, and Zebratower
(Viewpoint): complete commercial systems for zebrafish
2D + t tracking analysis,

� Zebrafish High-Content Screening Automation Leica
HCS LSI (Leica): a commercial confocal microscope
including integrated image processing software for
zebrafish,

� Zebrafishminer: an open source Gait-CAD add-on for
tissue detection in zebrafish with algorithms from
Gehrig,32 and

� ZFIQ98: a software package that integrates image anal-
ysis routines for zebrafish cell detection, zebrafish cell

quantification, and zebrafish neuron detection (free for
academic use).

A concept of platform services: centralized image
processing for distributed image acquisition

The platform BioEmergences (www.bioemergences.eu)
proposes the scientific community services for the automated
reconstruction of multiscale dynamics in the morphogenesis
of model organisms, thereby exploring a ‘‘digital campus’’
concept. It forms a part of the France-BioImaging (http://
france-bioimaging.org/) infrastructure, which is the French
counterpart of Euro-BioImaging (www.eurobioimaging.eu/).
BioEmergences is integrated into the Open Mole architecture
(www.openmole.org), original algorithms developed by the
platform partners, to produce pipelines that are optimized
for specific applications. A first successful application of
the BioEmergences Platform was the reconstruction of the
zebrafish embryonic cell lineage tree from two-photon laser
scanning microscopy,51,58 discussed in greater detail earlier
(Cell nuclei and membrane detection, cell tracking and lineage
reconstruction section).

Applications Based on Automated Image Processing

The previous sections show that many methods and tools
have been developed for the automated image processing
with applications to zebrafish data. However, most of the
publications in the field are method-oriented papers that are
using zebrafish datasets for proof of concepts to evaluate new
methods and to highlight future applications, rather than fo-
cusing on new biological insights. Many examples for such
proof-of-concept papers are mentioned in the previous sec-
tion. However, a few method-oriented papers also give some
additional biological insights, for example by enabling a sort
of ‘‘quantitative phenomenology’’ of complex biological pro-
cesses such as gastrulation movements7 or the geometry and
timing of the egg cleavages.58

Most application papers are based on phenotypic
analysis (with a focus on behavioral parameters, dis-
cussed in Phenotypic analysis: behavioral parameters
section, or on simple morphometric parameters or pat-
terns of reporter gene expression, discussed in Phenotypic
analysis: simple morphometric parameters or patterns of
reporter gene expression section) or on the construction of
3D atlases of gene and protein expression (Constructing
3D atlases of gene and protein expression section). In-
tegration of anatomical information, gene expression
patterns, and functional brain data section discusses the
integration of such analyses with anatomical and func-
tional brain data.

Phenotypic analysis: behavioral parameters

Drug screens based on behavioral responses to light
stimuli, individual fish movements, or social behaviors have
been reported that use automated assessment of relevant
parameters.

The effect of 14,000 compounds on the Photo Motor Re-
sponse of zebrafish embryos has been quantified by 2D + t
image analysis of the mean movement in their chorion of 8–10
embryos placed in a single well.42 This screen identified, for
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example, novel acetylcholinesterase (AChE) inhibitors. AChE
was suggested as the target of these compounds based on
clustering of the behavioral profiles obtained from the image
analysis, in which the unknown substances co-clustered with
known AChE inhibitors. Using a similar approach, the rest–
wake cycle effects over 3 days of 5648 compounds were as-
sessed by quantifying the locomotor activity of zebrafish
larvae.62 This screen implicated ether-a-go-go-related gene
(ERG) potassium channels and immunomodulators in the
regulation of rest and locomotor activity.

In other studies, movement patterns of a single zebrafish
larva (a few days old) placed in a well of a 96-well plate were
analyzed with commercial software. This enabled the assess-
ment of effects of 14 anti-epileptic drugs,16 of the concentration-
dependent neuroactive effects of ethanol, d-amphetamine, and
cocaine,36 and of the age- and concentration-dependent effects
of chlorpyrifos.14

The analysis of behavioral patterns becomes more com-
plicated with the simultaneous observation of adult fish in
tanks. Classical studies of the social behavior of fish use one
camera in 2D + t approaches, with which side effects of dif-
ferent concentrations of the hallucinogenic agents mescaline
and phencyclidine34 or the effects of lysergic acid diethyl-
amide (LSD)35 were observed. The reconstruction of 3D + t
movements can be achieved by simultaneously operating two
cameras. This was done to analyze the complete swim path of
fish in different genetic (leopard strain) or environmental
conditions (test of seven different substances).19 The fish
movements were measured and analyzed by hierarchical
clustering, revealing two clusters of substances with anxio-
genic and anxiolytic effects, respectively.

An overview about further activities in neurobiological
image processing in zebrafish with a focus on behavioral
parameters can be found in the survey paper of Xia.99

Phenotypic analysis: simple morphometric parameters
or patterns of reporter gene expression

In addition to the image processing approaches that were
customized for the zebrafish data previously discussed, many
standard approaches using commercial devices such as plate
readers or cell counters have been proposed. Here, simple
features are detected (e.g., mean signal intensity in the image,
number of fluorescent cells in a region), followed by further
analysis and determination of statistically relevant differ-
ences. The main advantage of these approaches is their
availability in the market, but the level of complexity that can
be investigated is usually limited.

Large-scale phenotypic screens can use simple readouts.
Automated Reporter Quantification in vivo (ARQiv) provides
a quantitative data acquisition approach that is amenable to
reporter-based assays in zebrafish embryos, larvae, or juve-
niles. The method has been validated to quantify loss and
regeneration of fluorescently tagged cell types, relative ac-
tivity of a transgenic Notch-signaling reporter, and metabo-
lism of the animals in the well by measuring the accumulation
of reactive oxygen species.71 In addition to the typically used
zebrafish transgenic for fluorescent reporter genes, animals
carrying bioluminescent reporter constructs can provide a
sensitive readout alternative for large-scale compound
screens, as recently shown for a reporter for glucocorticoid
signaling.72 Kanungo et al.39,100 quantified the toxic effects of

different concentrations of ethanol on axon length. A drug
screen with the zebrafish tuberculosis model of Mycobacterium
marinum infection was performed with a fully automated
pipeline, including automated yolk injection and a quantifi-
cation based on a COPAS flow cytometry system to determine
the total level of red fluorescence, representative of bacterial
load.22 Another approach based on target gene expression
patterns65 analyzed a library of 1040 annotated bioactive
agents on Fibroblast Growth Factor signaling in vivo. Here, a
2D pattern detection algorithm was applied to assess bright-
ness and extent of reporter gene expression in specific re-
gions.66 On a similar theme, a high-throughput pipeline was
developed to record embryo domain-specific reporter ex-
pression to map the interactions between cis-regulatory
modules and core promoters.32 Automated microscopy cou-
pled with custom-built embryo detection and segmentation
software allowed the spatial description of reporter activity
for 202 enhancer-promoter combinations.

An indepth understanding of the processes underlying
inflammation requires the in vivo observation, visualization,
and analysis of cell behaviors. A few approaches analyze such
processes by automated image processing and tracking of
leukocytes28,54,73 and neuromast positions28,73 with 2D + t
approaches, for example, to analyze pro-inflammatory or
anti-inflammatory effects of 320 drugs.73

Constructing 3D atlases of gene and protein expression

Gene and protein expression atlases are valuable resources
that are used to quantify and understand multiscale processes
of morphogenesis in time and space. The automated recon-
struction of prototypic 3D atlases for zebrafish development,
either at the scale of the whole embryo or for specific organs,
requires the development of dedicated methods. This type of
work has been pioneered by Drosophila.101,102 Comparable
strategies have been recently developed for the zebrafish
model, for example, for the whole blastula and early gastru-
la23 or for the brain at early larval stages.63 Mapping expres-
sion data of analyzed specimen into an anatomical reference
model enables the establishment of 3D atlas databases with a
unified spatial representation for many different expression
patterns. To reach this goal, several preconditions and algo-
rithmic steps are required: (1) Imaging: 3D datasets need to be
of standardized high quality and resolution (see Preproces-
sing methods section above). (2) Registration: A common
anatomical reference staining needs to be recorded for each
specimen to enable registration to the anatomical reference
model; landmarks have to be recognized in an automated
fashion; and registration strategies need to be developed,
which usually start with a coarse landmark-based registration
and are subsequently optimized by fine elastic registration
that relies on local information provided by the anatomical
reference stain (see description of the ViBE-Z system above,
Phenotype assessment by detection of cells and of tissue
patterns section and Fig. 5). (3) Last but not least, algorithms
for threshold determination of signal versus background need
to be determined. Except for the very early stereotypic cell
cleavages of the early embryo, identification of individual
positive cells will not be possible due to stochastic aspects of
cell positioning within anatomical elements of zebrafish em-
bryos. However, using high-quality data and precise regis-
tration, ViBE-Z has achieved cellular resolution with regard to
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mapping individual nuclei to even small anatomical brain
domains at one to five micrometer resolution.63 An initial
database (atlas) with 15 aligned gene expression patterns
(each averaged over approximately three individuals) along
with a manual segmentation of morphological structures is
provided for virtual colocalization studies (Fig. 9).

In addition, the development of dedicated interactive vi-
sualization tools is an issue to fully exploit the atlas resources.
The future of these atlases will certainly depend on the effort
that is made to help them grow through the addition of new
data by the community. The design of the ViBE-Z system63 is
geared into this direction: ViBE-Z accepts 3D confocal stacks
generated by the community, and the web interface performs
landmark detection, fine elastic registration, and provides the
3D registration to the anatomical reference for download in a
format that can be further processed by investigators with
ImageJ or other programs. It will be interesting to see whether
this or similar systems will be accepted by the community as
data standards and for upload into databases. It is necessary
that 3D expression atlases will be tightly integrated into the
extensive and standardized annotation system provided in
ZFIN. The registration into anatomical standard spaces,
however, also makes annotation-free searches of large data-
sets possible by using defined volume elements as queries.63

Tools for this and other types of searches need to be developed
and integrated into interactive search engines.

Integration of anatomical information, gene expression
patterns, and functional brain data

The recent development of optogenetic tools has enabled the
functional interrogation of brain function in zebrafish larvae.
Defined neuronal groups can be activated by depolarization or
inhibited by hyperpolarization using light-switchable ion
channels and ion pumps in whole zebrafish larvae. This can be
combined with genetically encoded fluorescent calcium sen-
sors to visualize circuit activity in normal behaving or opto-
genetically manipulated larvae. The transparent nature of the
larval brain enables ‘‘holistic’’ imaging of calcium activity
throughout the whole brain, opening unique opportunities for
new insights into circuit function.103 New challenges for image
processing emerge: Circuit activity data should be merged with
anatomical information to provide information on the neurons
that show activity. Furthermore, data from multiple larval
brains should be integrated to identify contributions to defined
circuits. Ahrens et al.103 have provided algorithms that enable
this type of analysis. Ideally, the spatial coordinates of each
individual experimental brain could be recorded before cal-
cium imaging, and registration to anatomical reference models
could be used to predict the location of regions that may be
subjected to optogenetic manipulation. Such advances in op-
tical imaging and automated image processing will signifi-
cantly enhance our understanding of neural circuits.

FIG. 9. The Virtual Brain Explorer for Zebrafish (ViBE-Z)63 provides a web-based interface to register 3D datasets recorded
by a standardized procedure to an anatomical reference model. (A, C, E) shows expression data channels of a single
longitudinal dorsoventral focal plane from three different 3 day old larval brains (anterior to the left; otpb:gfp and nkx2.2a;GFP
immunofluorescence and tbr1b whole mount in situ hybridization) along with lines delimiting anatomical brain regions. (B)
shows the fluorescent nuclear staining pattern used for registration to the reference larvae. (D) shows superimposition of the
three expression data channels and the nuclear stain in the same dorsoventral plane. (F) shows color coded anatomical
domains with color code given on the right. Color images available online at www.liebertpub.com/zeb
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Discussion: Open Questions and Future Trends

Automated processing is changing the standards of quan-
titative analysis of imaging data in the zebrafish model. Au-
tomated image analysis is of particular interest for high-content
screening. However, method and software integration into
standardized, modular, and open processing pipelines, in-
cluding data storage, image processing, data analysis, visuali-
zation, and web-based publication of results, still needs to be
developed.

We identify a number of open questions for a newly born
interdisciplinary community:

How Can Existing Zebrafish-Specific Image Processing
Algorithms, Tools, and Data Be Made Available
for the Community?

As a first step, the publication of existing zebrafish-specific
modules and a clear description of necessary interfaces for the
corresponding input and output data would help the commu-
nity get a better overview of existing methods and tools. In ad-
dition, this list should be enriched with links to papers describing
successful applications, including user rating and comments.
This paper is a first step in this direction, and it provides an Excel
table hosted at Sourceforge (http://sourceforge.net/projects/
zebrafishimage/) that will regularly be updated with a short
description of open source and commercial tools. A second step
is to host open source components in online code repositories
(e.g., Sourceforge, GitHub) to avoid the loss of algorithms when
developers leave and group websites get outdated.

How Can Algorithms and Tools be Modularized,
Generalized, and Bundled into Compatible Pipelines?

It is unlikely that the variety of different standards, image
repositories, algorithms, and tools will vanish in the near fu-
ture. Strong communities exist for many of these tools (such as
ITK, ImageJ/Fiji, and MATLAB), and at the moment, none of
them have a clear general advantage or disadvantage. In ad-
dition, software development requires specific knowledge
and training efforts, making developers usually hesitate to
change their toolbox preferences. This means that heteroge-
neous tool environments will have to also be handled in the
future. Similar effects can be expected for standards and
image repositories.

Initiatives such as the Open Bio Imaging Alliance
(www.openbioimage.org/) try to influence this process and
provide an overview of existing software resources with the
corresponding knowledge. The aim of this initiative is to
‘‘federate the harmonious community-based development of
interoperable software and promote good practices, including
the careful validation of tools.’’ Therefore, the development of
algorithms and tools for image processing in the zebrafish
should take the following into consideration:

(1) The use of routines would be greatly facilitated if im-
plemented as plugins for larger generic tools. Pre-
viously cited generic tools such as CellProfiler,
CYTOMINE, Icy, and ImageJ provide API or plug-in
functionalities to extend their capabilities.

(2) A condition for interoperability is a clear definition
and description of standards and compatibilities be-
tween different algorithms and tools. With this effort,

output images of one tool can be imported into other
tools. This requires import and export routines to
translate between different formats. One example is
the import routines for more than one hundred bio-
image formats in OMERO,96 but robust bidirectional
tools are missing.

(3) To avoid manual work, it will also be necessary to
establish zebrafish-specific guidelines for the specifi-
cation of metadata corresponding to all types of as-
says, imaging setups, image types, algorithms, and
tools. In addition, all relevant metadata should be
saved in an open and machine-readable format. These
guidelines should be implemented as extensions to
data formats of other more general initiatives and in-
tegrated into existing zebrafish databases, mainly into
the Zebrafish Model Organism Database of the Zebra-
fish Information Network ZFIN (http://zfin.org).

How Should Screens Be Designed to Make Image
Processing Easier?

Another important question is the planning of screens that
can be easily processed. Here, a first requirement is the stan-
dardization of all the parameters in the assay (fish lines, age of
the specimen, etc.) and of the image acquisition parameters
(e.g., microscope parameters such as resolution in space and
time, number of voxels, etc.). Image processing experts should
be consulted in an early phase of the planning of the experi-
ments to choose all these parameters and assay conditions
according to the requirements of image processing routines.
Otherwise, normalization and artifact corrections will prob-
ably be necessary that are very costly in time, and some arti-
facts might even compromise the image analysis results.11

A more comprehensive list of such recommendations can
be found in.104 As discussed earlier, the extension of these
more general standards to the needs of the zebrafish com-
munity would be necessary.

How Can Datasets with Terabytes of Data Be Handled?

It is a known and successful paradigm in the analysis of
large datasets to ‘‘move the knowledge extraction algorithms
to the data rather than the data to the algorithms.’’105 It means
that data should be transferred to repositories, and these re-
positories should be able to process the data using distributed
file systems and computer clusters such as, for example, Ha-
doop.106 One option is the ‘‘going public’’ of existing large
screening centers for customized screens of external partners
and the integration of next-generation data repositories into
these centers. Steps in this direction can be found, for example,
in the connection between the European Zebrafish Resource
Center and the Large-Scale Data Facility of the Karlsruhe In-
stitute of Technology.13 The program ‘‘Large-Scale Data
management and Analysis’’ of the German Helmholtz Asso-
ciation (www.helmholtz-lsdma.de/) established a Data Life
Cycle Lab ‘‘Key Technologies,’’ which specifically focuses on
data management of experiments requiring imaging with
high data rates.

The Research Data Alliance (http://rd-alliance.org/), cur-
rently in the founding phase, is a world-wide initiative that
will provide policies as well as new technologies for federated
data access and sharing. Other initiatives such as the founding
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of an UNITWIN UNESCO (http://unitwin-cs.org/) chair for
gathering universities and academic research institution
around the world within a Digital Campus for Complex
Systems have similar goals. In addition, unsolved zebrafish
image processing problems (e.g., robust tissue detection in
zebrafish phenotypes with severe malformations, fusion of
multiple fluorescence channels with delay times between
channels in cell tracking screens,.) should be identified and
published as challenges for international image processing
conferences; see, for example, the Particle Tracking Challenge
at the IEEE International Symposium on Biomedical Imaging
(ISBI).107 Organizing such challenges require a clear definition
of the goals of an image processing task, of the metrics em-
ployed, as well as of ground-truth information (e.g, segmen-
tation results) and metadata in standard formats.
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