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Abstract 

Background 

Regularized regression methods such as principal component or partial least squares 

regression perform well in learning tasks on high dimensional spectral data, but cannot 

explicitly eliminate irrelevant features. The random forest classifier with its associated 

Gini feature importance, on the other hand, allows for an explicit feature elimination, but 

may not be optimally adapted to spectral data due to the topology of its constituent 

classification trees which are based on orthogonal splits in feature space.  

 

Results 

We propose to combine the best of both approaches, and evaluated the joint use of a 

feature selection based on a recursive feature elimination using the Gini importance of 

random forests’ together with regularized classification methods on spectral data sets 

from medical diagnostics, chemotaxonomy, biomedical analytics, food science, and 

synthetically modified spectral data. Here, a feature selection using the Gini feature 

importance with a regularized classification by discriminant partial least squares 

regression performed as well as or better than a filtering according to different univariate 

statistical tests, or using regression coefficients in a backward feature elimination. It 

outperformed the direct application of the random forest classifier, or the direct 

application of the regularized classifiers on the full set of features. 

 

Conclusions 

The Gini importance of the random forest provided superior means for measuring 

feature relevance on spectral data, but – on an optimal subset of features – the 

regularized classifiers might be preferable over the random forest classifier, in spite of 

their limitation to model linear dependencies only. A feature selection based on Gini 

importance, however, may precede a regularized linear classification to identify this 

optimal subset of features, and to earn a double benefit of both dimensionality reduction 

and the elimination of noise from the classification task. 
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Background 

The high dimensionality of the feature space is a characteristic of learning problems 

involving spectral data. In many applications with a biological or biomedical background 

addressed by, for example, nuclear magnetic resonance or infrared spectroscopy, also 

the number of available samples N is lower than the number of features in the spectral 

vector P. The intrinsic dimensionality Pintr of spectral data, however, is often much lower 

than the nominal dimensionality P – sometimes even below N. 

 

Dimension reduction and feature selection in the classification of spectral data 

Most methods popular in chemometrics exploit this relation Pintr < P and aim at 

regularizing the learning problem by implicitly restricting its free dimensionality to Pintr.  

(Here, and in the following we will adhere to the algorithmic classification of feature 

selection approaches from [1], referring to regularization approaches which explicitly 

calculate a subset of input features – in a preprocessing, for example – as explicit 

feature selection methods, and to approaches performing a feature selection or 

dimension reduction without calculating these subsets as implicit feature selection 

methods.) Popular methods in chemometrics, such as principal component regression 

(PCR) or partial least squares regression (PLS) directly seek for solutions in a space 

spanned by ~Pintr principal components (PCR) – assumed to approximate the intrinsic 

subspace of the learning problem – or by biasing projections of least squares solutions 

towards this subspace [2-3], down-weighting irrelevant features in a constrained 

regression (PLS). It is observed, however, that although both PCR and PLS are capable 

learning methods on spectral data – used for example for in [4] – they still have a need 

to eliminate useless predictors [5-6]. Thus, often an additional explicit feature selection 

is pursued in a preceding step to eliminate spectral regions which do not provide any 

relevant signal at all, showing resonances or absorption bands that can clearly be linked 

to artefacts, or features which are unrelated to the learning task. Discarding irrelevant 

feature dimensions, though, raises the question of how to choose such an appropriate 

subset of features [6-8].   
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Different univariate and multivariate importance measures can be used to rank features 

and to select them accordingly [1]. Univariate tests marginalize over all but one feature 

and rank them in accordance to their discriminative power [9-10]. In contrast, 

multivariate approaches consider several or all features simultaneously, evaluating the 

joint distribution of some or all features and estimating their relevance to the overall 

learning task. Multivariate tests are often used in wrapper schemes in combination with 

a subsequent classifier (e.g. a global optimization of feature subset and classifier 

coefficients [11]), or by statistical tests on the outcome of a learning algorithm (e.g. an 

iterative regression with test for robustness [12-13]). While univariate approaches are 

sometimes deemed too simplistic, the other group of multivariate feature selection 

methods often comes at unacceptably high computational costs. 

 

Gini feature importance 

A feature selection based on the random forest classifier [14] has been found to provide 

multivariate feature importance scores which are relatively cheap to obtain, and which 

have been successfully applied to high dimensional data, arising from microarrays [15-

20], time series [21], even on spectra [22-23]. Random forest is an ensemble learner 

based on randomized decision trees (see [24] for a review of random forests in 

chemometrics, [14] for the original publication, and [25-28] for methodological aspects), 

and provides different feature important measures. One measure is motivated from 

statistical permutation tests, the other is derived from the training of the random forest 

classifier. Both measures have been found to correlate reasonably well [28]. While the 

majority of the prior studies focused on the first, we will focus on the second in the 

following.  

 

As a classifier, random forest performs an implicit feature selection, using a small 

subset of “strong variables” for the classification only [27], leading to its superior 

performance on high dimensional data.  The outcome of this implicit feature selection of 

the random forest can be visualized by the “Gini importance” [14], and can be used as a 

general indicator of feature relevance. This feature importance score provides a relative 

ranking of the spectral features, and is – technically – a by-product in the training of the 
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random forest classifier: At each node  within the binary trees  of the random forest, 

the optimal split is sought using the Gini impurity  – a computationally efficient 

approximation to the entropy – measuring how well a potential split is separating the 

samples of the two classes in this particular node.  

 

With   being the fraction of the  samples from class  out of the total of 

 samples at node , the Gini impurity  is calculated as 

 

Its decrease  that results from splitting and sending the samples to two sub-nodes  

and  (with respective sample fractions  and )  by a threshold on 

variable  is defined as 

 

In an exhaustive search over all variables  available at the node (a property of the 

random forest is to restrict this search to a random subset of the available features [14]), 

and over all possible thresholds , the pair  leading to a maximal  is 

determined. The decrease in Gini impurity resulting from this optimal split  is 

recorded and accumulated for all nodes  in all trees  in the forest, individually for all 

variables : 

 

This quantity – the Gini importance  – finally indicates how often a particular feature  

was selected for a split, and how large its overall discriminative value was for the 

classification problem under study. 

 

When used as an indicator of feature importance for an explicit feature selection in a 

recursive elimination scheme [1] and combined with the random forest itself as classifier 

in the final step, the feature importance measures of the random forest have been found 

to reduce the amount of features. Most studies using the Gini importance [22,29] and 

the related permutation-based feature importance of random forests [16,18,20,21,23] 

together with random forests in a recursive feature elimination scheme, also showed an 
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increases in prediction performance. (Only [17] reports a constant performance, but with 

greatly reduced amount of features.) While these experiments indicate the efficiency of 

the Gini importance in an explicit feature selection [24] one might raise the question 

whether a random forest – the “native” classifier of Gini importance – with its orthogonal 

splits of feature space is optimal also for the classification of spectra with correlated 

features and data-specific noise (Fig. 1), or if other classification models may be a 

better match with properties of spectral data. 

 

Objective of this study 

Thus, in the present work, we were interested in evaluating the combination of a feature 

selection by Gini importance together with standard chemometric classification 

approaches, such as discriminant PCR and PLS classification (D-PCR and D-PLS, 

respectively) which are known to be well adapted to spectra, and in studying their 

performance in dependence of specific characteristics of spectral data. In a first 

experiment we evaluated the joint application of explicit and implicit dimension 

reduction, using uni- and multivariate feature selection strategies in combination with 

random forest, D-PLS and D-PCR classification in an explicit recursive feature 

elimination (Table 1). In a second experiment, we studied the influence of different noise 

processes on random forest and D-PLS classification to identify optimal conditions for 

explicit and implicit dimension reduction. In both experiments we were interested in 

identifying general properties and differences of the methods employed in the 

classification of spectral data. 
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Results and Discussion 

 

Visualizing feature importance 

Measuring feature relevance using the Gini importance is subject to selection bias on 

factorial data [30]. Splits are more often sought on variables with a higher number of 

different factors, and a correction of the Gini importance is necessary in such cases [30-

32]. Spectral data, except for count data, represent continuous signals, with a 

distribution of N different values for each spectral channel or feature. Each feature will 

allow the same number of distinct splits in a random forest classification, and, hence, a 

measurement of the relevance of spectral regions for a specific classification problem 

will be unaffected by this potential source of bias.  

 

Both univariate tests for significant class differences returned smooth importance 

vectors when employed on the spectral data (Fig. 2, top). The smoothness of the Gini 

importance was dependent on the size of the random forest (Fig. 2, bottom) – small 

forests resulted in “noisy” importance vectors, only converging towards smooth vectors 

when increasing the overall number of trees in the forest or the overall number of splits. 

As such changes influence the absolute value of this measure, the Gini importance 

could not be interpreted in absolute terms – like the p-values of the univariate tests – 

but only allowed for a relative comparison. For such a comparison between different 

variables and between different measures, the features were ranked according to their 

importance score (Fig. 3 A). Here, univariate importance measures and Gini importance 

agreed well in many, although not all, spectral regions (Fig. 3 A, rows 2 and 3). An 

example of the most prominent differences between univariate feature importance and 

multivariate Gini importance are highlighted in Fig. 3 B. Spectral regions deemed 

unimportant by the univariate measures – with complete overlap of the marginal 

distributions as shown in Fig. 3 B – may be attributed high importance by the 

multivariate importance measure (Fig. 4), indicating spectral regions with features of 

higher order interaction.  
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Inspecting the Gini feature importance we observed – similar to [32] – that some 

spectral regions were selected as a whole, suggesting that correlated variables were 

assigned similar importance. Thus, the importance measure may be interpreted like a 

spectrum, where neighbouring channels of similar importance may be considered as 

representatives of the same peak, absorbance or resonance line. This can be used in 

an exploratory visualization of feature relevance (Figs. 2 and 3 A, top row). As the 

random forest prefers splits on correlated variable over splits on uncorrelated ones [28] 

it should be noted, however, that this “importance spectrum” may be somewhat biased 

towards overestimating the importance of major peaks spanning over many spectral 

channels. 

 

Feature selection and classification 

The classification accuracies provided by the first experiment based on the real data 

allowed for a quantitative comparison of the methods applied and for testing for 

statistically significant differences between results on the full set of features in 

comparison to the subselected data sets (Table 2, “stars”). On one half of the data, the 

feature selection hardly changed the classification performance at all (Tables 2 and 3, 

tumor and candida data), while on the other half a feature selection improved the final 

result significantly (Tables 2 and 3, wine and BSE data), almost independently of the 

subsequent classifier.  In the latter group optimally subselected data typically comprised 

about 1-10% of the initial features (Table 3, Fig. 5). Such a data dependence in the 

benefit of a preceding feature selection is well known (e.g. [33]). Different from [33], 

however, we did not see a relation to the apparent degree of ill-posedness of the 

classification problem (i.e., a low ratio N/P of the length of the spectral vector P and the 

number of available samples N leading to an underdetermined estimation problem – he 

BSE and candida data, for example, are nearly identical in dimensionality – PBSE = 

1209, Pcandida = 1500 – and number of training samples – NBSE = 2 * 96, Ncandida = 2 * 

101).  

 

Random forest, the only nonlinear classifier applied, performed slightly better than the 

linear classifiers on the unselected data sets (BSE and wine data, Fig. 5), but improved 
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only moderately in the course of the feature selection (Fig. 5, Table 3: p-value > 10−3). 

Given that random forest performs well on the unselected data sets, and that little or no 

benefit is incurred by an additional explicit feature selection (Table 2, Fig. 5), it is 

apparent that an implicit feature selection is at work and performs well when training the 

random forest classifier. Ultimately, however, the random forest classifier was 

surpassed in performance by any of the regularized linear methods on all data sets 

(Table 2: column 9 vs. column 7-8). This rather weak classification performance of the 

random forest may be seen in line with [20], but contrasts results of e.g. [10, 18] using 

random forest in the classification of microarrays, similar to spectra in their high 

dimensionality of their feature vectors. Few differences could be observed between D-

PLS and D-PCR classification. Among the different feature selection strategies, the 

Wilcoxon-test and the Gini importance performed better on average than the iterated 

selection based on the regression coefficients (Fig. 5, Table 2), with slightly better 

classification results for the Gini importance (Table 2). Overall, while the Gini 

importance was preferable in feature selection, the chemometric methods performed 

better than random forest in classification, in spite of their limitation to model linear 

dependencies only.   

 

The two linear classifiers of this study generally seek for subspaces  maximizing the 

variance  of the explanatory variables  in the subspace   

 

in case of  PCR  or the product of variance and the (squared) correlation    

 

with the response  in case of  PLS [2, 3]. Thus, for a better understanding of D-PCR 

and D-PLS, both  and   were plotted for individual channels and for 

individual learning tasks in Fig. 6 (with the absolute value of the coefficients of  

encoded by the size of the circles in Fig. 6). On data sets which did not benefit greatly 

from the feature selection, we observed variance and correlation to be maximal in those 
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variables which were finally assigned the largest coefficients in the regression (indicated 

by the size of the black circles in Fig. 6). Conversely, in data sets where a feature 

selection was required, features with high variance but only moderate relevance to the 

classification problem (as indicated by a low univariate correlation or multivariate Gini 

importance) were frequently present in the unselected data (Fig. 6, black dots). This 

might be seen as a likely reason for the bad performance of D-PCR and D-PLS when 

used without preceding feature selection on the BSE and wine data: Here the selection 

process allowed to identify those features where variance coincided with class-label 

correlation (Fig. 6, red circles), leading to a similar situation in the subsequent 

regression as for those data sets where a feature selection was not required (Fig. 6, 

compare subselected features indicated red in the left and central row with features in 

the right row).  

 

In summary, observing that the degree of ill-posedness is not in itself an indicator for a 

required feature selection preceding a constrained classification, it might be argued that 

non-discriminative variance – hindering the identification of the optimal subspace in 

PCR, and disturbing the optimal trade-off between correlation and variation in PLS – 

may be a reason for the constrained classifiers’ failing on the unselected data and, 

consequently, a requirement for a feature selection in the first place.  

 

 

Feature selection and noise processes 

The first experiment advocated the use of the Gini importance for a feature selection 

preceding a constrained regression for some data sets. Thus, and in the light of the 

unexpectedly weak performance of the random forest classifier, we studied the 

performance of the D-PLS and the random forest classifier as a function of noise 

processes which can be observed in spectral data (see Methods section for details) to 

identify optimal situations for the joint use of explicit and implicit feature selection. 

 

In this second experiment, random forest proved to be highly robust against the 

introduction of “local” noise, i.e. against noise processes affecting few spectral channels 
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only, corresponding to spurious peaks or variant spectral regions which are irrelevant to 

the classification task (both on the synthetic bivariate classification problem, Figs. 1 left, 

7 A; and the modified real data, Fig. 7 CE). The random forest classifier was, however, 

unable to cope with additive global noise: Already random offsets that were fractions of 

the amplitude S of the spectra (Fig. 7 DF; S = 10-2) resulted in a useless classification 

by the random forest. As global additive noise stretches the data along the high 

dimensional equivalent of the bisecting line (Fig. 1), the topology of its base learners 

may be a disadvantage for the random forest in classification problems as shown in Fig. 

1.  Single decision trees, which split feature space in a box-like manner orthogonal to 

the feature direction are known to be inferior to single decision trees splitting the feature 

space by oblique splits [34] (although they have a considerable computational 

advantage). Random offsets often occur in spectral data, for example resulting from 

broad underlying peaks or baselines, or from the normalization to spectral regions that 

turn out to be irrelevant to the classification problem. Thus, one might argue that the 

“natural” presence of a small amount of such noise may lead to the rather weak overall 

performance of the random forest observed in the first experiment (Table 2, Fig. 5). 

 

Partial least squares performed slightly better than random forests on all three data sets 

at the outset (Fig. 7). In contrast to the random forest, PLS was highly robust against 

global additive noise: On the synthetic classification problem – being symmetric around 

the bisecting line – the random offsets did not influence the classification performance 

at all (Fig. 7 B). On the real data – with more complex classification tasks – the D-PLS 

classification still showed to be more robust against random offsets than the random 

forest classifier (Fig. 7 DF). Conversely, local noise degraded the performance of the D-

PLS classification (Fig. 6 ACE, although for rather large values of S only). The D-PLS 

classifier seemed to be perfectly adapted to additive noise – splitting classes at arbitrary 

oblique directions – but its performance was degraded by a large contribution of non-

discriminatory variance to the classification problem (Figs. 6 & 7 ACE). 

 

In the presence of increasing additive noise, both univariate and multivariate (i.e., the 

Gini importance) feature importance measures lost their power to discriminate between 
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relevant and random variables at the end (Fig. 8 DF), with the Gini importance retaining 

discriminative power somewhat longer finally converging to a similar value for all three 

variables correlating well with a random classification and an (equally) random 

assignment of feature importance (Fig. 8 D). When introducing a source of local random 

noise and normalizing the data accordingly, the univariate tests degraded to random 

output (Fig. 8 E), while the Gini importance measure (Fig. 8 CE) virtually ignored the 

presence and upscaling of the non-discriminatory variable (as did the random forest 

classifier in Fig. 7 ACE). 

 

Feature selection using the Gini importance 

Overall, we observed that the random forest classifier – with the non-oblique splits of its 

base learner – may not be the optimal choice in the classification of spectral data. For 

feature selection, however, its Gini importance allowed to rank non-discriminatory 

features low and to remove them early on in a recursive feature elimination. This 

desirable property is due to the Gini importance being based on a rank order measure 

which is invariant to the scaling of individual variables and unaffected by non-

discriminatory variance that does disturb D-PCR and D-PLS. Thus, for a constrained 

classifier requiring a feature selection due to the specificities of the classification 

problem (Table 2, Fig. 5), the Gini feature importance might be a preferable ranking 

criterion: as a multivariate feature importance, it is considering conditional higher-order 

interactions between the variables when measuring the importance of certain spectral 

regions, providing a better ranking criterion than a univariate measure used here and in 

similar tasks elsewhere [9-10].  

 

A comparison of the computing times of the different feature selection and classification 

approaches (Table 4) shows that the computational costs for using the Gini importance 

is comparable to the cost of using the other multivariate feature selection criterion tested 

in this study. On average the computing time was no more than twice as long as for the 

more basic univariate importance measures.  
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Conclusions 

In the joint application of the feature selection and classification methods on spectral 

data neither the random forests classifier using the Gini importance in a recursive 

feature selection, nor a constrained regression without feature selection were the 

optimal choice for classification. Random forest showed to be robust against single 

noisy features with a large amount of non-discriminatory variance. Unfortunately it also 

showed to be highly sensible to random offsets in the feature vector, a common artefact 

in spectral data. D-PLS was capable of dealing with such offsets, although it failed in the 

presence of non-discriminatory variance in single, highly variable features. The removal 

of such irrelevant – or even misleading –  predictors was crucial in the application of the 

constrained classifiers tested in this study. Overall, the combined application of Gini 

importance in a recursive feature elimination together with a D-PLS classification was 

either the best approach or – in terms of statistical significance – comparable to the best 

in all classification tasks, and may be recommended for the separation of binary, linearly 

separable data. 

 

The results also suggest that when using a constrained learning method – such as the 

D-PLS or D-PCR classifier as in this study – the main purpose of a feature selection is 

the removal of few “noisy” features with a large amount of variance, but little importance 

to the classification problem. Then, the feature elimination is a first step in the 

regularization of a classification task, removing features with non-discriminatory 

variance, and allowing for a better regularization and implicit dimension reduction by the 

subsequent classifier. Considering the similarity of PLS, ridge regression and continuum 

regression [2-3, 35] – all of them trading correlation with class labels, and variance of 

the data for a regularization – one might expect this to be a general feature for these 

constrained regression methods. 

 

Only binary classifications tasks were studied here, but one may expect that results 

generalize to multi-class problems as well when using, for example, penalized mixture 

models in place of a D-PLS classification.  It might be worthwhile to test whether using a 

constrained classifier in the final classification step of a recursive feature selection is 
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able to increase the classification performance on other data as well, for example on 

microarrays where a recent study [20] reported of a general advantage of support vector 

machines with RBF-kernel over the random forest classifier.  

 

Of course, rather than advocating a hybrid method using random forest for feature 

selection and a constrained linear classifier to predict class membership, it might be 

advantageous to adapt the random forest classifier itself to fit the properties of spectral 

data in an optimal fashion. For individual tree-like classifiers, a large body of literature 

about trees using such non-orthogonal, linear splits in their nodes is available [34] and 

may be used for such an adaption of the random forest classifier. 
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Methods 

In a first experiment, we systematically evaluated the joint use of different feature 

selection and classification methods, on a number of different spectral data sets. In a 

second, we looked into the behaviour of the random forest and D-PLS classifier on 

synthetically modified data, to understand specific properties of these methods when 

applied to spectra. 

 

Experiment 1: Joint feature selection and classification 

In general, feature selection is a concern in both regression (prediction of a continuous 

response) and in classification (prediction of two or more categories). Here, we confined 

ourselves to binary classification tasks. Our experiments were based on four different 

data sets available to us from different studies [36-39], providing – with different 

preprocessing, labels, or dichotomous sub-problems – eleven binary classification tasks 

(Table 2).  

 

Classification and feature selection methods 

Three different feature selection approaches were applied to the data in an explicit 

recursive feature elimination (Table 1), together with the three following classifiers: 

linear discriminant principal component (D-PCR) and partial least squares (D-PLS) 

classification (using [40]) and the nonlinear random forest classifier (RF) (using [41]). 

While trees in the random forest allow for a classification via majority votes and a binary 

decision, D-PCR and D-PLS  classification were used with a predefined and fixed 

threshold, i.e. a score of 0.5 intermediate to the trained class values 0 and 1, using 

balanced classes during training and for the test (see below).  

 

As univariate feature selection measure, the p-values of channel-wise Wilcoxon-tests 

for class differences were used to rank the features and to allow for a filtering of 

features prior to the D-PLS and D-PCR classification. In the two multivariate feature 

selection procedures applied, variables were recursively eliminated either according to 

smallest PLS or PC regression coefficient (as in [5], although without stability test), or 

according to smallest Gini importance value. In the latter case the actual classification in 
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the selected subspace was performed not only by a RF as in [15-18], but also by the 

linear classifiers. In total, seven different combinations of feature selection and 

classification methods were applied to the data (Table 2). The classification of the data 

without any feature selection was tested as well. For the results shown in the last 

column of Tables 2 and 3 – i.e. the combination of feature selection using regression 

coefficients and a subsequent classification by RF – PLS was used in feature selection. 

For the sake of computational simplicity, all multivariate feature selection measures 

were optimized using their own cost function and not in a joint loop with the subsequent 

classifier (using a cross-validated least-squares-error for PLS and PCR regression 

coefficients and the out-of-bag classification error of the RF for Gini importance, 

optimized over the same parameter spaces as the respective classifiers). For both 

univariate filters and multivariate wrappers, 20% of the remaining features were 

removed in each iteration step.  Prior to classification all data was subject to L1 

normalization, i.e. to a normalization of the area under the spectrum in a predefined 

spectral region.  

 

Data 

Data set one, the BSE data set, originates from a study concerning a conceivable ante-

mortem test for bovine spongiform encephalopathy (BSE). Mid-infrared spectra of N = 

200 dried bovine serum samples (Npos = 95, Nneg = 105) were recorded in the spectral 

range of 400-4000 cm-1 with P = 3629 data points per spectrum. Details of the sample 

preparation and of the acquisition of spectra are reported in Refs. [14, 31]. The same 

spectra were used in a second binary classification task after a smoothing and 

downsampling (“binning”), and thus by reducing the number of data points per spectrum 

to Pred = 1209.  

 

Data set two, the wine data set, comprised N = 71 mid-infrared spectra with a length of 

P = 3445 data points from the spectral region of 899-7496 cm-1, sampled at a resolution 

of approx. 4 cm-1 interpolated to 2 cm-1, originating from the analysis of 63 different 

wines using an automated MIRALAB analyzer with AquaSpec flow cell. In the 

preprocessing a polynomial filter (Savitzky-Golay, length 9) of second order was applied 
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to the spectra. Labels assigned to these data were the type of grape (Nred = 30, Nwhite = 

41) in a first learning task and an indicator of the geographic origin of the wine (NFrench = 

26, NWorld = 45) in a second.  

 

Data set three, the tumor data set, comprised N = 278 in vivo 1H-NMR spectra with a 

length of P = 101 data points from the spectral region between approximately 1.0 ppm 

and 3.5 ppm, originating from 31 magnetic resonance spectroscopic images of 31 

patients, acquired at 1.5T with an echo time of 135ms in the pre-therapeutic and post-

operative diagnostics of (recurrent) brain tumor (Nhealthy = 153, Ntumor border = 72, Ntumor 

center = 53) [31, 32]. Two binary groupings were tested, either discriminating healthy vs. 

both tumor groups (tumor all), or the spectral signature of the tumor center vs. the 

remaining spectra (tumor center).  

 

Data set four, the candida data set, comprised N = 581 1H-NMR spectra of cell 

suspensions with a length of P = 1500 data points in between 0.35-4ppm, originating 

from a chemotaxonomic classification of yeast species (Candida albicans, C. glabrata, 

C. krusei, C. parapsilosis, and C. tropicalis). A subset of the data was originally 

published in [34]. Its five different subgroups of sizes N = {175, 109, 101, 111, 85} 

allowed to define five different binary subproblems (“one-against-all”).  

 

Comparison  

In the evaluation, 100 training and 100 test sets were sampled from each of the 

available data sets, in a ten times repeated ten-fold cross validation [42-43], following 

the overall test design in [19]. In order to obtain equal class priors both in training and 

testing, the larger of the two groups of the binary problems was subsampled to the size 

of the smaller if necessary. Where dependence between observations was suspected, 

e.g. in the tumor data where more than one spectrum originated for each patient, the 

cross-validation was stratified to guarantee that all spectra of a correlated subset were 

exclusively assigned to either the training or the test data [42-43].  
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The random forest parameters were optimized in logarithmic steps around their default  

values [41] (using 300 trees, and a random subspace with dimensionality equal to the 

rounded value of the square of the number of features) according to the out-of-bag error 

of the random forest, while the number of latent variables γ in the linear classifiers was 

determined by an internal five-fold cross-validation for each subset, following the 1σ rule 

for choosing the γ at the intersection between the least error (at γopt) plus an interval 

corresponding to the 1σ standard deviation at γopt, and the mean accuracy.  

  

The classification accuracy was averaged over all 100 test results and used as 

performance measure in the comparison of the different methods. While all feature 

selection and all optimization steps in the classification were performed utilizing the 

training data only, test result were recorded for all feature subsets obtained during the 

course of feature selection (Fig. 4). To verify significant differences between the test 

results, a paired Cox-Wilcoxon test was used on the accuracies of the 100 test sets as 

proposed in [42-43]. Such paired comparisons were performed for each classifier 

between the classification result obtained for the full set of features, and the best result 

when applied in conjunction with a selection method (i.e. the results with highest 

classification accuracy in the course of feature selection). Feature selection approaches 

leading to a significant increase in classification performance were indicated accordingly 

(Table 2, indicated by stars). Once the best feature selection and classification 

approach had been identified for a data set (as defined by the highest classification 

accuracy in a row in Table 2), it was compared against all other results on the same 

data set. Results which were indistinguishable from this best approach (no statistical 

difference at a 5% level)  were indicated as well  (Table 2, indicated by bold values).  

 

Experiment 2: PLS and RF classification as a function of specific data 

properties 

D-PLS reportedly benefits from an explicit feature selection on some data sets [33]. 

Random forest reportedly performed well in classification tasks with many features and 

few samples [15-18], but was outperformed by standard chemometrical learning 

algorithms when used to classify spectral data. Thus, to identify reasons for these 
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differences and to corroborate findings from experiment one, we decided to study the 

performance of both methods in dependence of two noise processes which are specific 

to spectral data.  

 

Noise processes  

We identified two sources of unwanted variation (noise processes) which can be 

observed in spectral data, and which can jeopardize the performance of a classifier.   

 

First, there are processes affecting few, possibly adjacent, spectral channels only. 

Examples for such changes in the spectral pattern are insufficiently removed peaks and 

slight peak shifts (magnetic resonance spectroscopy), the presence of additional peaks 

from traces of unremoved components in the analyte, or from vapour in the light beam 

during acquisition (infrared spectroscopy). Identifying and removing spectral channels 

affected by such processes is often the purpose of explicit feature selection. We refer to 

this kind of noise as “local noise” in the following, where the locality refers to the 

adjacency of channels along the spectral axis. 

 

Second, there are processes affecting the spectrum as a whole. Examples for such 

noise processes may be the presence (or absence) of broad baselines, resulting in a 

random additional offset in the spectrum. Variation may also result from differences in 

the signal intensities due to changes in the concentration of the analyte, variation in 

reflectance or transmission properties of the sample (infrared spectroscopy), or the 

general signal amplitude from voxel bleeding and partial volume effects (magnetic 

resonance spectroscopy), leading to a scaling of the spectrum as a whole, and – after 

normalization – to random offsets in the spectrum. Such processes increase the 

nominal correlation between features and are the main reason for the frequent use of 

high-pass filters in the preprocessing of spectral data (Savitzky-Golay filter, see above). 

It might be noted that this noise does not have to offset the spectrum as a whole to 

affect the classification performance significantly, but may only modify those spectral 

regions which turn out to be relevant to the classification task. Nevertheless, we refer to 

this kind of noise as "global noise" here. 
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Modified and synthetic data sets 

For visualization (Fig 1, left), we modelled a synthetic two-class problem, by drawing 

2*400 samples from two bivariate normal distributions (centred at (0,1) and (1,0), 

respectively, with standard deviation 0.5). The two features for the two-dimensional 

classification task were augmented by a third feature comprising only random noise 

(normally distributed, centred at 0, standard deviation 0.5), resulting in a data set with 

N=800, P=3 and balanced classes. To mimic local noise, we rescaled the third, random 

feature by a factor S, for S = 2{0,1,...,20}. In real spectra one might expect S – the ratio 

between the amplitude of a variable that is relevant to the classification problem, and a 

larger variable introducing non-discriminatory variance only – to be of several orders of 

magnitude.  Here, changing S gradually increased the variance of the third feature and 

the amount of non-discriminatory variance in the classification problem. To mimic global 

noise, we added a constant offset (normally distributed, centred at 0, standard deviation 

0.5), also scaled by S = 2{0,1,...,20},  to the features of every sample as an offset. This 

increased the correlation between the features and, along S, gradually stretched the 

data along the bisecting line (Fig. 1, right).  

 

In addition to the synthetic two-class problem of Fig. 1, we modified two exemplary real 

data sets (candida 2 and BSE binned) by these procedures in the same way, here using 

S = 10{-6,-4,...,16}, using the largest amplitude of a spectrum as reference for a shift by 

S=1, or a rescaling of the random feature (N(0,.5)). 

 

Comparison 

Gini importance and univariate importance (t-test) were calculated along S for the 

features of the synthetic data set. PLS and random forest classification were applied to 

all data sets, for all values of S, after a L2-normalization of the feature vector. (Which 

may be a closer match with the noise statistic than the L1 normalization used in the real 

data in the first experiment.) Classification accuracy was determined according to the 

procedure described above (Experiment 1).  
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Tables 
 
 
 
Table 1: Recursive feature selection. 
 

1.  Calculate feature importance on the training data  
 a. Gini importance 

 b. absolute value of regression coefficients (PLS/PCR) 

 c. p-values from Wilcoxon-test/t-test 

2.  
 

Rank the features according to the importance measure, remove 

the p% least important  

3.  Train the classifier on the training data 
 A. Random forest 

 B. D-PLS 

 C. D-PCR 

 and apply it to the test data 

4.  Repeat 1.-4. until no features are remaining 
5.  Identify the best feature subset according to the test error 

 
Workflow of the recursive feature selection, and combinations of feature importance measures (1.a–1.c) 
and classifiers (3.A–3.C) tested in this study. Compare with results in Table 2 and Fig. 4. Hyper-
parameters of PLS/PCR/random forest are optimized both in the feature selection (1.) and the 
classification (3.) step utilizing the training data only. While Gini importance (1.a) and regression 
coefficients (1.b) have to be calculated within each loop (step 1.-4.), the univariate measures (1.c) have 
only to be calculated once. 
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Table 2: Average cross-validated prediction accuracy. 
 

 
no selection univariate selection 

multivariate selection 
(Gini importance) 

multivariate selection 
(PLS/PC) 

PLS PC RF PLS PC RF PLS PC RF PLS PC RF 

MIR BSE orig 66.8 62.9 74.9 80.7 80.7 76.7 84.1 83.2 77.4 68 63.5 75.5 

  – – – *** *** * *** *** ** **   

 binned 72.7 73.4 75.3 80.4 80.7 76.6 86.8 85.8 77.3 85 82.1 75.6 

  – – – *** *** ** *** *** ** *** ***  

MIR wine French 69.5 69.3 79.3 83.7 83.5 82.2 82.4 81 81.2 66.9 70.0 79.8 

  – – – *** **  *** ** *    

 grape 77 71.4 90.2 98.1 98.7 90.3 98.4 98.4 94.2 91.7 88.5 90.4 

  – – – *** ***  *** *** ** *** ***  

NMR tumor all 88.8 89 89 89.3 89.3 90.5 90.0 89.6 89.6 89.3 89.2 89.1 

  – – – *  *** **  *    

 center 71.6 72.3 73.1 73.9 72.7 73.9 72.6 72.0 74.3 71.8 72.7 73.3 

  – – – **   *      

NMR candida 1 94.9 94.6 90.3 95.1 94.9 90.6 95.6 95.3 90.3 95.3 95.2 90.7 

   – – –          

  2 95.6 95.2 93.2 95.8 95.7 93.7 95.6 95.5 93.5 96.0 95.9 94.1 

  – – –       *   

  3 93.7 93.8 89.7 93.7 93.8 89.9 94.2 93.8 89.9 94.0 94.0 90.2 

   – – –    *  * *   

  4 86.9 87.3 83.9 87.8 87.3 84.0 88.2 87.6 84.3 87.7 87.6 84.1 

   – – –    *      

  5 92.7 92.6 89.2 92.7 92.6 89.9 92.5 92.5 90.3 92.8 92.6 90.0 

  – – –          

 
 
The best classification results on each data set are underlined. Approaches which do not differ 
significantly from the optimal result (at a 0.05 significance level) are set in bold type (see methods 
section). Significant differences in the performance of a method as compared to the same classifier 
without feature selection are marked with asterisks (* p-value < 0.05, ** p-value < 0.01, *** p-value < 
.001). The MIR data of this table benefit significantly from a feature selection, whereas the NMR data do 
so only to a minor extent. Overall, a feature selection by means of Gini importance in conjunction with a 
PLS classifier was successful in all cases and superior to the “native” classifier of Gini importance, the 
random forest, in all but one cases.  
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Table 3: Benefit from feature selection.  
 

 
univariate selection 

multivariate selection  
(Gini importance) 

multivariate selection  
(PLS/PC) 

PLS PC RF PLS PC RF PLS PC RF 

MIR BSE orig 
10.0 
(6) 

10.0 
(4) 

1.5 
(7) 

10.0 
(6) 

10.0 
(6) 

2.0  
(6) 

3.0 
(13) 

0.9 
(80) 

0.5 
(51) 

 binned 
6.0  
(5) 

7.0  
(5) 

2.2 
(9) 

10.0 
(9) 

10.0 
(6) 

3.0  
(9) 

10.0 
(5) 

9.0  
(4) 

0.4 
(51) 

MIR wine French 
4.0  
(3) 

3.0  
(2) 

0.7 
(64) 

5.0  
(3) 

3.0  
(1) 

3.0 
(26) 

0.0 
(100) 

0.6 
(33) 

0.0 
(64) 

 grape 
8.0  
(2) 

8.0 
(21) 

0.6 
(64) 

10.0 
(4) 

10.0 
(5) 

2.0 
(11) 

4.0  
(1) 

6.0  
(1) 

0.0 
(64) 

NMR 
tumor 

all 
1.0 
(80) 

0.5 
(11) 

4.0 
(6) 

4.0 
(51) 

0.0 
(100) 

2.0  
(6) 

0.8 
(11) 

0.0 
(100) 

0.3 
(80) 

 center 
2.0  
(7) 

0.4  
(6) 

0.8 
(86) 

2.0 
(26) 

0.2 
(64) 

0.7 
(41) 

0.0 
(100) 

0.7 
(13) 

0.3 
(80) 

NMR 
candida 

1 
0.5 
(80) 

0.0 
(80) 

0.8 
(80) 

0.0 
(100) 

0.0 
(100) 

0.8 
(41) 

0.4 
(64) 

0.0 
(100) 

0.4 
(9) 

 2 
0.4 
(80) 

0.9 
(64) 

0.0 
(80) 

2.0 
(64) 

0.4 
(26) 

0.0 
(100) 

2.0 
(21) 

1.0 
(21) 

0.4 
(41) 

 3 
0.0 

(100) 
0.0 

(100) 
0.0 
(80) 

2.0 
(80) 

0.6 
(80) 

2.0 
(26) 

2.0 
(80) 

0.0 
(100) 

0.7 
(41) 

 4 
0.8 
(80) 

0.0 
(100) 

0.0 
(80) 

2.0 
(80) 

1.0 
(80) 

2.0 
(64) 

0.7 
(33) 

0.0 
(100) 

0.3 
(32) 

 5 
0.0 

(100) 
0.0 

(100) 
0.7 
(80) 

0.0 
(100) 

0.4 
(80) 

1.0 
(64) 

0.7 
(64) 

0.7 
(80) 

0.4 
(21) 

 
Significance of accuracy improvement with feature selection as compared to using the full set of features; 
and percentage of original features used in a classification that has maximum accuracy (in parentheses). 
The significance is specified by −log10(p), where p is the p-value of a paired Wilcoxon test on the 100 
hold-outs of the cross-validation (see text). For comparison, −log(0.05) = 1.3 and −log(0.001) = 3; the  
value of 6.0 reported for MIR BSE binned in the second row of the first column corresponds to a highly 
significant improvement in classification accuracy, corresponding to a p-value of 10

-6
. 
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Table 4: Computing times. 

 
no selection univariate selection 

Multivariate selection 
(Gini importance) 

multivariate selection 
 (PLS/PC) 

PLS PC RF PLS PC RF PLS PC RF PLS PC RF 

MIR BSE orig 5.7 11.1 9.9 46.4 53.9 46.8 88.8 97.0 91.5 87.9 92.4 88.0 

 binned 2.8 3.2 3.1 13.6 14.7 15.9 26.1 27.1 29.0 28.7 29.6 31.5 

MIR wine French 8.8 7.8 2.4 26.6 21.8 7.7 47.0 45.9 33.5 17.2 14.7 7.4 

 grape 12.1 10.3 2.5 28.9 22.3 8.0 54.0 47.6 33.5 15.8 13.1 6.5 

NMR tumor all 0.3 0.4 0.4 1.4 1.2 2.1 2.9 2.7 3.6 3.6 3.4 4.3 

 center 0.2 0.2 0.2 1.1 0.8 1.1 2.2 1.9 2.1 2.1 1.8 2.0 

NMR candida 1 4.6 8.8 7.7 22.4 41.2 37.1 43.5 62.5 61.1 59.8 78.4 75.4 

 2 3.7 4.8 3.8 18.0 22.0 19.4 34.5 38.5 37.3 36.3 40.3 37.9 

 3 3.7 4.7 3.7 17.4 20.1 17.9 33.4 36.0 34.7 34.6 37.8 35.1 

 4 3.9 5.1 4.8 18.7 23.4 24.3 36.0 40.5 60.5 41.6 46.2 47.0 

 5 3.5 3.9 2.6 31.9 32.4 27.0 62.6 63.0 60.0 58.3 43.4 38.5 

 

The table reports the runtime for the different feature selection and classification approaches, and the 
different data sets (on a 2GHz personal computer with 2GB memory). Values are given in minutes, for a 
ten-fold cross-validation and with parameterisations as used for the results shown in Tables 2 and 3. For 
all methods, a univariate feature selection takes about five times as long as a classification of the same 
data set without feature selection. Both multivariate feature selection approaches require approximately 
the same amount of time for a given data set and classifier. Their computing time is no more than twice 
as long as in a recursive feature elimination based on a univariate feature importance measure. 
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Figures 
 
 
 

 
 
Figure 1: Decision trees separating two classes: Classification problem with uncorrelated features (left), 
and a distorted version resulting from an additive noise process (right). The said process induces 
correlation by adding a random value to both features, thus mimicking the acquisition process of many 
absorption, reflectance or resonance spectra (see Methods section). Growing orthogonal decision trees 
on such a data set – shown on the right – results in deeply nested trees with complex decision 
boundaries. (Both trees not grown to full depth for visualization purposes). 
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Figure 2: Importance measures on NMR candida data in the range from 0.35 to 4 ppm (indicated in the 
upper figure) for all 1500 spectral channels (indicated in the lower figure). Top: p-values of a t-test (black) 
and Wilcoxon test (gray). Below: Gini importance of a random forest with 3000 trees (gray) and 6000 
trees (black). Compare t ranked measures in figure 3. 
 



33 

 

 

Figure 3: Comparison of the different feature selection measures applied to the NMR candida 2 data (3A). 
Multivariate feature importance measures can select variables that are discarded by univariate measures 
(3B). Figure 3A, from top to bottom: Gini importance, absolute values; Gini importance, ranked values, p-
values from t-test, ranked values. Figure 3B: Feature importance scores below (black: Gini importance, 
gray: t-test). Perhaps surprisingly, regions with complete overlap of the marginal distributions (3B bottom, 

indicated by vertical lines), are assigned importance by the multivariate measure (3B top). This is 

indicative of higher-order interaction effects which can be exploited when used as a feature importance 

measure with a subsequent classifier. 
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Figure 4: Tukey mean-difference plot of univariate and multivariate feature importance (left) and 

correlation of the importance measures shown in Figure 3A. Horizontal lines in the left figure indicate 

differences of more than two sigma, the vertical line in the right figure indicates a threshold on the 

univariate P-value of 0.05 (with relevant features being to the right of the vertical line). --  The importances 

assigned by univariate and multivariate measures are generally highly correlated; many of the features 

marked in red (corresponding to the spectral channels indicated in Figure 3B), however, are flagged as 

uninformative by a univariate measure and as relevant by a multivariate measure.  
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Figure 5: Classification accuracy (left column) and standard error (right column) during the course of 
recursive feature elimination for PLS regression (black), PC regression (dark gray) and random forest 
(light gray), in combination with different feature selection criteria: univariate (dotted), PLS/PC regression 
(dashed) and Gini importance (solid). 
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Figure 6: Channel-wise variance of each feature (horizontal axis) and its correlation with the dependent 
variable (vertical axis). For the data sets of the left and the central column, a feature selection was not 
required for optimal performance, while the data sets shown in the right columns benefitted from a feature 
selection. Circle diameter indicates magnitude of the coefficient in the PLS regression. In the right column 
selected features are shown by red circles, while (the original values of) eliminated features are indicated 
by black dots. Relevant features show both a high variance and correlation with the class labels.  
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Figure 7: The effect of different noise processes on the performance of a random forest (green triangles) 
and a PLS classification (red circles). In the left column, feature vectors are augmented by a random 
variable, which is subsequently rescaled according to a factor S (horizontal axis), thus introducing non-
discriminatory variance to the classification problem. In the right column, a random variable scaled by 
factor S is added as constant offset to the feature vectors, increasing the correlation between features 
(see text for details).  Shown are results on the basis of the bivariate classification problem of Figure 1 
(top row),  the NMR candida 2 data (middle), and the BSE binned data (below).   
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Figure 8: The effect of different noise processes on the performance of the feature selection methods in 
the synthetic bivariate classification problem illustrated in Figure 1. In the left column feature vectors are 
extended by a random variable scaled by S, in the right column a random offset of size S is added to the 
feature vectors. Top row: classification accuracy of the synthetic two-class problem (as in Fig. 7, for 
comparison); second row: multivariate Gini importance, bottom row: p-values of univariate t-test. The 
black lines correspond to the values of the two features spanning the bivariate classification task (Fig. 1), 
the blue dotted line corresponds to the third feature in the synthetic data set, the random variable. The 
performance of the random forest remains nearly unchanged even under the presence of a strong source 
of “local” noise for high values of S 
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