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Abstract

Motivation: Alignment of multiple liquid chromatography/mass spectrometry (LC/MS)

experiments is a necessity today, which arises from the need for biological and technical repeats.

Due to limits in sampling frequency and poor reproducibility of retention times, current LC

systems suffer from missing observations and nonlinear distortions of the retention times across

runs. Existing approaches for peak correspondence estimation focus almost exclusively on

solving the pairwise alignment problem, yielding straightforward but suboptimal results for

multiple alignment problems.

Results: We propose SIMA, a novel automated procedure for alignment of peak lists from

multiple LC/MS runs. SIMA combines hierarchical pairwise correspondence estimation with

simultaneous alignment and global retention time correction. It employs a tailored multidi-

mensional kernel function and a procedure based on maximum likelihood estimation to find

the retention time distortion function that best fits the observed data. SIMA does not require

a dedicated reference spectrum, is robust with regard to outliers, needs only two intuitive pa-

rameters, and naturally incorporates incomplete correspondence information. In a comparison

with 7 alternative methods on 4 different datasets, we show that SIMA yields competitive and

superior performance on real-world data.

SIMA Software: Free binaries and free C++ source code are available from our website

http://hci.iwr.uni-heidelberg.de/MIP/Software.
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1 Introduction

Recent developments in liquid chromatography/mass spectrometry (LC/MS) have afforded insight

into the dynamics of biological systems at unprecedented levels of detail. High-resolution MS–based

protein identification and quantitative MS are now established methodologies in fields as diverse

as proteomics (Aebersold and Mann, 2003), glycomics (Zaia, 2010), lipidomics (Shevchenko and

Simons, 2010) and metabolomics (Dettmer et al., 2007).

Robust Alignment of LC/MS Experiments. Current LC/MS experiments often inves-

tigate complex biological systems over a set of different environmental conditions and/or time-

courses. The associated data are routinely split into multiple fractions and acquired in technical

and biological replicates, yielding tens to hundreds of LC/MS runs. Each of these runs delivers

a snapshot of the system of interest and to enable their joint analysis, the common components

in different measurements need to be related to each other. In practical LC/MS applications, two

major factors complicate the determination of component correspondences across multiple runs:

(i) the limited reproducibility attained on LC systems which gives rise to nonlinear distortions of

the retention time domain; and (ii) the limited sampling frequency inherent to data-driven MS/MS

acquisition as a notorious cause for missing observations. To obtain quantitative estimates or to

increase peptide identification rates over a series of experiments, LC/MS data analysis frame-

works (Mueller et al., 2007; Khan et al., 2009) rely on accurate mass and retention time alignment

to propagate correspondence information between runs, experiments and samples. Accounting

for LC distortions is a necessary prerequisite for such cross-experiment inference (America and

Cordewener, 2008; Podwojski et al., 2009).

Although numerous pairwise alignment methods have been proposed, the question of simul-

taneous alignment of multiple datasets is still a particularly challenging task: as the number of

potential correspondences grows exponentially, false initial multiple correspondence estimates are

more likely, and estimation procedures for the associated warping functions need to be robust to

potential outliers. Even more, in the light of practical application, multiple alignment methods

should naturally cope with incomplete correspondences where peaks are only observed in a subset

of runs and no obvious missing value imputation strategy is available.

Types of LC/MS Alignment Algorithms. Published alignment algorithms work on dif-

ferent representations: either peaks extracted from raw measurements, or the raw measurements

themselves (Prakash et al., 2006; Vandenbogaert et al., 2008; Clifford et al., 2009). This contribu-

tion focuses on the alignment of sparse sets of samples, i.e. peaks pi = [(m/z)i, (rt)i, zi], which lie

in a three-dimensional feature space (ion mass-to-charge ratio, ion elution time, and ion charge)

as proposed in (Cox and Mann, 2008; Lange et al., 2008; Khan et al., 2009). Existing approaches
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can be divided into three categories:

1. Alignment based on a static reference, where all observed measurements are aligned to a

single reference peak list (Zhang et al., 2005; Bellew et al., 2006; Lange et al., 2007, 2008;

Sturm et al., 2008). Because these approaches single out one measured reference run, they

perform well if there is at least one run of exceptional quality. Peaks that are not present in

the reference cannot be used for alignment. This can be a substantial drawback, especially

in low signal-to-noise ratio (SNR) situations or if suboptimal reproducibility is an issue.

2. Complete pairwise correspondence-based alignment, where the pairwise distances between

all observed measurements in all runs yield pairwise alignments (Li et al., 2005). Based

on these correspondence pairs, global correspondence groups are computed by iteratively

linking similar peaks. Although this approach overcomes the single reference problem, it

is computationally expensive since it requires the calculation of all similarity measurements

between all extracted peaks and performs a retention time correction in each iteration.

3. Hierarchical progressive alignment, where a similarity measure based on peak distances deter-

mines the merging sequence between different peak lists (Prakash et al., 2006; Mueller et al.,

2007). The algorithm starts with an arbitrary (e.g. the most complete) list and subsequently

merges the most similar lists until all correspondences are computed. Like in pairwise align-

ment, the retention times are corrected in each step which is is suboptimal (Smith et al.,

2006). Few methods exist that work without a similarity measure (Pluskal et al., 2010).

In all categories, existing multiple alignment methods are straightforward extensions of pairwise

alignments (Mueller et al., 2007; Lange et al., 2007, 2008; Khan et al., 2009). While some of

them use heuristics to deal with peaks that are not present in all available peak lists, i.e. missing

correspondences, others completely discard incomplete correspondence information. However, the

probability that a peak is visible in all peak lists decreases with increasing numbers of runs that

have to be aligned. Simultaneous correction of all peak lists is superior but rarely considered

(Smith et al., 2006).

Simultaneous Multiple LC/MS Alignment. We propose SIMA, a novel approach that

performs a single global retention time correction based on the multiple correspondence information

obtained from all peak lists and naturally deals with missing correspondences. SIMA: (i) uses a

pairwise greedy hierarchical strategy to determine all (potentially incomplete) correspondences

across D peak lists (without performing a retention time correction in each step; section 2.1); and

then (ii) uses a kernel density estimation type nonparametric approach to simultaneously work

on all correspondence groups and derive a D-dimensional retention time ridge. Its highest path
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Figure 1: SIMA workflow: Starting from a set of D LC/MS peak lists, SIMA conducts an initial
correspondence estimation that yields groups of corresponding peaks (section 2.1). Based on these
groups, the method calculates the retention time distortion function that is most likely to explain
the observed retention time differences across the D peak lists (section 2.2). Given this function,
all retention time deviations are corrected, and peak correspondences are reestimated (optional)
(section 2.3).

is found by maximum likelihood estimation and approximates the global retention time distortion

function that describes retention time shifts across all runs (section 2.2). Finally, (iii) it uses this

function to correct the individual peak lists for retention time shifts and optionally performs a

second hierarchical correspondence estimation (section 2.3). Step (ii) relies on a customized kernel

that is inspired by signal maps (Prakash et al., 2006) and that has specifically been tailored to

make direct use of complete and incomplete correspondence information.

The remainder of this contribution is organized as follows: section 2 introduces the proposed

workflow (see fig. 1) and its mathematical framework. Section 3 describes the experimental setup

and error statistics used to judge SIMA performance and section 4 reports and discusses the

outcomes. We end with conclusions in section 5.
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2 Methods

2.1 Correspondence Estimation

The correspondence estimation is based on: (i) a measure for estimating the distance of peaks

from two different peak lists, (ii) an algorithm for establishing peak correspondence pairs based

on this measure, (iii) a distance measure for quantifying the dissimilarity of two peak lists based

on their peak correspondences, and (iv) a hierarchical iteration scheme that successively combines

the sparse individual peak lists into a more complete master peak list, while storing all established

peak correspondences.

Notation. Let P = {Pd} , d = 1, . . . ,D, be the set of the D LC/MS peak lists to be

aligned. The dth peak list Pd comprises |Pd| peaks, Pd = {pd,1, ...,pd,|Pd|}, and each peak pd,i =

[(m/z)d,i, (rt)d,i, zd,i] is described by its mass over charge position (m/z), retention time (rt), and

charge state z. To simplify notation, we discard the index indicating the membership of a peak

to a peak list throughout the remainder of the derivations. Scalars are printed in standard font,

vectors in bold.

Distance Measure for Peak Correspondence Estimation. The definition of an ade-

quate peak distance measure is fundamental for identifying peak correspondences between different

LC/MS runs. We quantify the distance between two peaks pi and pj by the diagonal thresholded

squared Mahalanobis distance φ given by

φ(pi,pj) = Ψ ((pi − pj) ∗W ∗ (pi − pj)
′) (1)

where we define Ψ(ψ) = ψ for 0 ≤ ψ ≤ 1, Ψ(ψ) = ∞ for ψ > 1, and the weight matrix W

as W = diag−1(T 2
(m/z), T

2
(rt), T

2
z ). T(m/z) and T(rt) are user-defined threshold parameters for the

upper bounds on (m/z) and (rt) shift tolerance. In practice, their choice depends on measurement

precision and is determined by the experimental instrument setup. Choosing very small values for

Tz disallows correspondences between peaks with different charge states (default). If reliable charge

state information is not available, deviations in charge state may be allowed by using larger values

for Tz. Furthermore, W may easily be adapted to also take other features like intensity differences

into account (cf. Supplementary Material A). In the two-dimensional [(m/z), (rt)] domain, eq. (1)

yields elliptical equidistance lines within the feasible area in which peaks may correspond to each

other (cf. Supplementary Material B).

Establishing Correspondence Groups. Given φ(·, ·), the problem of finding correspon-

dences between peaks from two peak lists Pd and Pe can efficiently be solved by an algorithm that is
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best known for solving the “stable marriage” problem (Gale and Shapley, 1962). Initially designed

for graph-matching problems, this method computes an optimal matching between elements from

two disjunct sets, such that peak pairs with small distances are preferred. The resulting set Fde

contains all peak correspondences of Pd and Pe, that is each peak pair (i, j) ∈ Fde contains exactly

one peak from both Pd and Pe. Note that the two peaks forming a pair may differ in (m/z), (rt),

and z. Some peaks might not find a partner.

Distance Measure for Peak List Dissimilarity. Given Fde, the dissimilarity Φ(Pd, Pe)

of two peak lists is obtained from averaging the finite truncated squared Mahalanobis distances of

the assigned peak pairs. Denoting the peaks in pair (i, j) as pi and pj , we obtain

Φ(Pd, Pe) =
1

|Fde|

∑

(i,j)∈Fde

φ(pi,pj). (2)

Hierarchical Correspondence Estimation. Rather than relying on one predetermined

reference peak list for the alignment, we follow the idea of (Mueller et al., 2007) and apply a greedy

pairwise hierarchical iterative approach: This strategy eliminates the bias towards a single LC/MS

run which occurs when using a reference peak list in the correspondence estimation. Nonetheless,

SIMA can also use a single reference peak list to compute multiple peak correspondences. This

may be beneficial if one of the peak lists is a priori known to be correct.

We successively combine the peak lists until all individual peak lists have been absorbed in

one master peak list. In parallel, we construct correspondence groups, i.e. sets of peaks from the

individual peak lists that match (see Supplementary Material C for details). Let P(t) be the set

of peak lists that still have to be combined in iteration t. We initialize P(0) = P, that is with

all original peak lists. During the course of the iterations, P(t) may contain both members of the

set of original peak lists and/or representatives for previously combined lists. In each iteration,

the two most similar peak lists according to eq. (2) are combined. Assume that in iteration step

t these are Pd ∈ P(t) and Pe ∈ P(t). First, an empty peak list Pde is created, and all peaks that

are unique to either Pd or Pe are added to it. Then, all peak correspondences (i, j) ∈ Fde between

Pd and Pe are considered, and one representative peak is added for each correspondence pair. Its

(rt) and (m/z) values are set to the mean over the respective values of all peaks that in previous

iterations have contributed to the two merging peaks. Finally, Pd and Pe are removed from P(t)

and replaced by the combined peak list Pde yielding P(t + 1). The correspondence groups are

updated accordingly. After D − 1 steps, all peak lists have been combined, i.e. |P(D − 1)| = 1.

We note that the greedy nature of the correspondence estimation allows for an efficient imple-

mentation. However, once merged, peaks cannot be split at later iterations which may suggest
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that the respective peaks should rather be kept separate. This typically does not pose a practical

problem, since by setting the thresholds in W the experimentalist can control the merging behavior

of peaks.

Let N be the number of resulting correspondence groups. After iteration D − 1, the retention

times associated with the peaks in the N groups are stored in a retention time correspondence map

C ∈ R
N×D. More precisely, element cn,d of C holds the retention time of the peak in Pd that is

a member in correspondence group n. If no such peak exists, the respective entry is flagged to

indicate a missing correspondence. Each row vector cn ∈ R
D, n = 1, . . . , N , in C can be interpreted

as a correspondence point in the D-dimensional retention time space (see figs. 4 and 6).

2.2 Maximum Likelihood Path Estimation

Retention Time Distortion Function. Define a master time scale (MTS) in the retention time

space by equidistant sampling of the line of unit slope (that is the angle bisection line for D = 2).

Further, define the retention time distortion function (RTDF) as the function that describes the

retention time shifts for all peak lists. Its trajectory in retention time space thus explains the

observed correspondence points cn, n = 1, . . . , N . For a set of perfectly reproducible LC/MS

measurements, all cn lie on the line of unit slope such that the RTDF is equivalent to the latter.

In practice, however, retention time measurements are subject to correlated noise and nonlinearly

deviate from the ideal case. Given an estimate for the RTDF, the distortion of a peak can be

identified by back-projecting its retention time onto the MTS (cf. fig. 5).

The behavior of the estimate should be in agreement with fundamental physical properties of

LC/MS. We argue that a suitable estimation procedure should: (i) yield a RTDF that features

a certain degree of smoothness since we do not expect abrupt changes in the elution process, (ii)

ensure that the RTDF is monotonous such that the elution order is preserved across runs (Kirchner

et al., 2007), (iii) be robust with respect to measurement errors and naturally deal with outliers

that may originate from incorrect matches in the initial correspondence estimation, and (iv) be

independent of the input order of peak lists. We cast the problem of estimating the RTDF into

a maximum likelihood (MFL) estimation framework, i.e. we find the RTDF as the function that

best explains the correspondence points and at the same time fulfills the above constraints. To this

end, we define a customized kernel that incorporates all prior assumptions. Its convolution with

the (partially incomplete) observed peak correspondences yields a retention time ridge. The path

along the highest points of this “height profile”, i.e. the maximum likelihood path, is the RTDF

that describes the nonlinear retention time distortions across the set of peak lists.

Constructing a Retention Time Ridge using a Sigmoid Kernel. Whereas smoothness
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Figure 2: Plot of the sigmoid kernel defined in eq. (3) for (a) D = 2 and (b) D = 3. In both
cases, the kernel has two preferred areas along the angle bisection line (light areas) and (2D − 2)
“forbidden regions” (dark areas).

is guaranteed by employing a smooth kernel, the monotonicity of the ridge in retention times is more

difficult to achieve. Figuratively speaking, the kernel (cf. fig. 2) should induce two preferred areas

(lower left, upper right) and two “forbidden regions”: When convolving it with all correspondence

points in C, the response at a point x ∈ R
2 merely depends on the contribution of correspondence

points whose retention times are not both lower or both higher than the ones of x. This encourages

the monotonicity of the ridge. Whereas, theoretically speaking, sets of correspondence points can

be constructed that lead to paths that violate the monotonicity constraint, all point sets that can

be considered a reasonable outcome of a set of LC/MS measurements yield a monotonous result.

To make our approach more robust against measurement errors, an adaptive kernel parameter is

used that controls the slope and hence the smoothness of the kernel and decreases the influence of

outliers. Finally, our method is independent of the input order of the peak lists, since we use an

equal kernel profile along all dimensions. By construction, all discussed properties carry over to

higher dimensions.

More formally, let the kernel K : x ∈ R
D → (0, 1) be an outer product of sigmoid functions

k(x, α) = 1/(1 + e−αx) where

K(x) =

D∏

d=1

k(xd, α) +

D∏

d=1

k(−xd, α). (3)

Here, xd ∈ R denotes the dth component of x, and α ∈ R
+ is a parameter that controls the

influence of the estimated correspondences in the retention time space (see fig. 4(c)). A higher

value for α yields a steeper slope of the sigmoid function k(·, ·) and thus increases the local influence

of the kernel (see below). For an arbitrary point x ∈ R
D we obtain the cumulative kernel response
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Figure 3: Three-dimensional plot of a retention time ridge formed by convolution of the correspon-
dence points from two peak lists (dots) with the sigmoid kernel (cf. fig. 2(a)).

H with regard to all correspondence points cn with the convolution

H(x) =
1

Ω

N∑

n=1

ω(cn)K(x − cn) = (4)

1

Ω

N∑

n=1

ω(cn)

[
D∏

d=1

k(xd − cn,d, α) +
D∏

d=1

k(−xd + cn,d, α)

]

(5)

where ω(cn) is a weighting factor and Ω =
∑N

n=1 ω(cn). To deal with missing correspondences,

we replace k(·, ·) with the adapted version k̃(·, ·), given by k̃(xd − cn,d, α) = k(xd − cn,d, α) if

cn,d 6= 0 and 1 otherwise. In both cases, an analytical solution for the derivative H ′(x) exists (cf.

Supplementary Material D-F). The intuition behind the adaption is as follows: In case of missing

correspondences, the correspondence points degenerate to correspondence hyperplanes (cf. fig. 6).

Although incomplete, these correspondences still constrain the RTDF in the orthogonal subspace

within the retention time domain. We hence adapt the kernel to be uniform along the missing

dimensions. This way, dimensions for which no correspondence information is available are simply

ignored whereas all other information is used whenever available. Here, we use equal weights for

all correspondence points, that is ω(cn) = 1 ∀n = 1, . . . , N . However, different weighting schemes

are possible (cf. Supplementary Material G). An exemplary retention time ridge is shown in figs.

3 and 4.

ML-Estimation of the Retention Time Distortion Function. Using the sigmoidal

kernel from above, the RTDF can be estimated by finding the points on the highest path through

the retention time ridge that correspond to the time points of the MTS. We start with sampling

a set of L equidistant points yl ∈ R
D, l = 1, . . . , L from the line of unit slope that constitute the
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Figure 4: (a) Contour plot of the retention time ridge (cf. fig. 3). (b) Correspondence points
(dots) and selected hyperplanes Hl. (c) The intersections of the retention time ridge with these
hyperplanes yield height profiles on which the gradient ascents are performed. The profiles of H120

and H240 show distinct bumps. There, the correspondence point density is high, leading to a larger
kernel parameter α, i.e. a steeper kernel that emphasizes the influence of local points. The opposite
holds, e.g., for H60.

MTS, and perform L gradient ascents toward the retention time ridge, starting from each of the

yl. Each gradient ascent is performed on a subspace of R
D (cf. fig. 4). These subspaces Hl are

hyperplanes perpendicular to the line of unit slope and contain the yl, that is, they are described

by the normal vector [1, . . . , 1] and support vectors yl. The gradient ascents yield L points xl ∈ R
D

whose piecewise linear interpolation approximates the RTDF. Mathematically, this procedure is

similar to a maximum likelihood (ML) estimation where K(x) ∈ (0, 1) acts as a prior and we

determine the xl by

arg max
(x1,...,xL)

L∑

l=1

H(xl) subject to xl ∈ Hl. (6)

Formulas for the normalized gradient directions along which we search for the maxima and for

the update of the current estimate of xl in iteration t are derived in Supplementary Data D. We

propose to use an adaptive step size for the gradient ascents based on the Powell-Wolfe conditions

(Powell, 1976) for increased robustness (Supplementary Material F). Note that when performing

the gradient ascents, our method never computes the retention time ridge in its entirety but only

evaluates H(x) at a few points.

Adaptive Kernel Bandwidth. Naturally, the density of the correspondence points varies
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Figure 5: Retention time correction for D = 2 where we correct the retention time for peak
pi = [(m/z)i, (rt)i, zi] in peak list P2. We obtain m1 as the intersection of y = (rt)i with the
retention time distortion function (RTDF). By back-projection onto the master time scale (MTS)
we obtain m2. The difference in the vertical distance between m1 and m2 constitutes the amount
by which the retention time of pi needs to be shifted.

throughout retention time space. In such scenarios, the performance of nonparametric kernel

methods can be improved by introducing an adaptive kernel bandwidth (Brockmann et al., 1993).

Thus, we locally adapt the kernel parameter α as follows: In low density areas, α is set to low values

to achieve a higher robustness and avoid artefacts in the RTDF caused by single observations.

In areas of high density, the smoothness of the RTDF is reduced by using larger values for α

(cf. Supplementary Material H). This trades off bias and variance and reduces the overall error

compared to a non-adaptive scheme.

2.3 Retention Time Correction

After performing the L gradient ascents and subsequent linear interpolation we obtain the piecewise

linear RTDF which we use for correcting the retention times of the peaks observed in the D peak

lists. Assume we want to correct the retention time for peak pi = [(m/z)i, (rt)i, zi] in peak list

Pd. We first find m1, the intersection of the RTDF with the hyperplane given by support vector a

with ad = (rt)i and 0 elsewhere and normal vector a/||a||. We then identify that point on the line

of unit slope that is closest to this intersection point (m2). The distance of those two points in

the dth dimension constitutes the amount by which the retention time of pi needs to be corrected.

The procedure is repeated for all peaks and all peak lists (see fig. 5).

Second Correspondence Estimation. Correction of the retention times after the first

iteration may give more correspondences. Hence, a second correspondence estimation (cf. 2.1)

may yield a slightly more complete correspondence map C. However, practical impact is limited

due to the overall robust nature of SIMA.
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3 Experiments

Real-world Data. Lange et al. (Lange et al., 2008) compared a total of six alignment algorithms

on four publicly available proteomics (P1, P2) and metabolomics (M1, M2) datasets, including

msInspect (May et al., 2007), MZmine (Katajamaa and Oresic, 2005; Katajamaa et al., 2006),

OpenMS (Lange et al., 2007; Sturm et al., 2008), SpecArray (Li et al., 2005), XAlign (Zhang

et al., 2005) and XCMS (Smith et al., 2006). In addition, Pluskal et al. recently proposed MZmine

2 with RANSAC aligner (Pluskal et al., 2010). We obtained the proteomics datasets used by

Lange et al. (Lange et al., 2008) from the Open Proteomics Database (OPD) (Prince et al., 2004).

Dataset P1 originates from an E. coli sample and contains two LC/MS runs of six fractions.

Dataset P2 represents three LC/MS runs of five fractions of different cell states of Mycobacterium

smegmatis. The datasets were analyzed by LC/MS/MS on an ESI ion trap mass spectrometer

(ThermoFinnigan Dexa XP Plus), exported in centroid mode and preprocessed using TOPP tools

(Kohlbacher et al., 2007) resulting in a peak list of (m/z) and (rt) positions, which served as input

for all alignment procedures. Each run of a fraction contains between 400 and 5800 peaks. Lange

et al. (Lange et al., 2008) optimized parameters for all approaches on the first fraction of each

dataset and generated a partial ground truth by linking MS/MS search results from SEQUEST to

the LC/MS spectra. A detailed description of all steps and the parameterization of the algorithms

is given in Supplementary Material I and (Lange et al., 2008).

For the metabolomics samples, Lange et al. (Lange et al., 2008) analyzed Arabidopsis thaliana

leaf tissue using an API QSTAR Pulsar i (Applied Biosystems/MDS Sciex) for the M1 dataset

and a MicrOTOF-Q (Bruker Daltonics) for the M2 dataset resulting in 44 and 24 LC/MS spectra

respectively. Peaks were identified using XCMS (Smith et al., 2006) resulting in 4000 to 17600 data

points per LC/MS spectrum. They generated ground truth by identifying highly confident peak

groups which were reproducible over at least four runs and did not only have the same retention

time, but also showed high correlation in their chromatographic peak shapes. Parameters were

optimized on the complete datasets for all algorithms since no separate fractions were available.

Even though SIMA can operate without a predetermined alignment order, it was run in the same

starwise manner (i.e. using one predefined reference against which all remaining runs were aligned)

that was used for the other algorithms and the ground truth generation in order to enable a fair

comparison (Otherwise, SIMA might benefit from not using a potentially incomplete reference).

Again we refer to Lange et al. (Lange et al., 2008) and the supplementary materials for a detailed

description and the parameterization of the algorithms.

Performance Measures. To measure the performance of an approach, we compute its

precision (PR) and recall (RE). Precision is the fraction of correctly aligned peaks among all peaks
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data measure ms- MZ-mine Open-MS Spec- X-Align XCMS MZ-mine 2 SIMA
Inspect Array (RANSAC)

P1 RE 0.66 0.85 0.93 0.70 0.88 0.81 0.94 0.92
PR 0.50 0.89 0.93 0.70 0.88 0.80 0.94 0.94
F 0.57 0.87 0.93 0.70 0.88 0.80 0.94 0.93

P2 RE 0.58 0.77 0.83 0.50 0.73 0.70 0.75 0.76
PR 0.26 0.66 0.72 0.35 0.63 0.59 0.68 0.72
F 0.36 0.71 0.77 0.41 0.67 0.64 0.71 0.74

M1 RE 0.27 0.89 0.87 - 0.88 0.94 0.91 0.92
PR 0.46 0.74 0.69 - 0.70 0.70 0.74 0.75
F 0.34 0.81 0.77 - 0.78 0.80 0.82 0.83

M2 RE 0.23 0.98 0.93 - 0.93 0.98 0.98 0.99
PR 0.47 0.84 0.79 - 0.79 0.78 0.83 0.84
F 0.31 0.90 0.85 - 0.85 0.87 0.90 0.91

All RE 0.43 0.87 0.89 - 0.85 0.86 0.90 0.90
PR 0.42 0.78 0.78 - 0.75 0.72 0.80 0.81
F 0.39 0.82 0.83 - 0.80 0.78 0.84 0.85

Table 1: Comparison of the results of seven current alignment approaches with SIMA based on
the datasets of the comparative studies by Lange (Lange et al., 2008) and Pluskal (Pluskal et al.,
2010). Recall (RE), Precision (PR) and the F-measure (F ) are reported as an average over various
runs on two proteomics (P1, P2) and two metabolomics (M1, M2) datasets as well as an overall
average of all datasets (All). Bold print highlights the overall best values for each dataset. MZ-
mine 2 (RANSAC) and SIMA show the best overall recall, while SIMA features the highest values
for precision and the F-measure.

aligned by one approach, PR = # correctly aligned peaks
# aligned peaks , whereas recall corresponds to the fraction

of correctly aligned peaks by one approach among all correct peaks according to the ground truth,

RE = # correctly aligned peaks
# correct peaks . To simplify comparison, we use the F-measure F = 2·PR·RE

PR+RE , which

summarizes precision and recall value by computing their harmonic mean (Gay et al., 2002).

4 Results and Discussion

SIMA Yields Competitive or Superior Results. In table 1, the results of the comparison

are detailed. With regard to recall, SIMA and MZ-mine 2 (RANSAC) tie at the best performance

with an average recall of 0.90. While MZ-mine 2 (RANSAC) and OpenMS feature better recall

values for the P1 and P2 datasets, SIMA shows better recall performance on the M1 and M2

data. With regard to precision, i.e. the likelihood of results being correct, SIMA shows the best

performance in all datasets with an average precision value of 0.81. This is also reflected in the

F-measure, which combines recall and precision. Here, SIMA shows the best overall performance

with an average value of 0.85. SIMA always is among the best two methods with respect to the

F-measure (P1, P2) or even performs best (M1, M2). A complete list of the results on all fractions

of all datasets is given in Supplementary Material J.

It is important to note that the comparison favors the algorithms that require a reference peak
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list: the ground truth generated by Lange et al. (Lange et al., 2008) is based on the same reference

run as used for the alignment. For independently generated ground truth results for any reference-

spectrum based approach are bound to deteriorate since not all peaks present in the ground truth

necessarily need to be in the reference peak list. The performance measurements of hierarchical

approaches such as SIMA are not affected by this kind of ground truth generation.

SIMA is Especially Powerful when Aligning Numerous Spectra. The strength of

the SIMA approach is particularly visible on the metabolomics (M1 and M2) datasets. Here,

it outperforms the other methods with regard to precision as well as recall. The metabolomics

datasets contain more LC/MS spectra (44 and 24, respectively) than the proteomics datasets (2 and

3, respectively) and, thus, also show significantly more missing correspondences. Further, visual

inspection confirms that these datasets are less perturbed by noise and show a more characteristic

structure, which benefits more from the nonlinear fitting of SIMA than the proteomics set, for

which linear methods already show good results.

Exploiting Incomplete Correspondence Information is Feasible. Visual examples of

SIMA alignment results are given in fig. 6 and in Supplementary Material K. Fig. 6 shows an (m/z)

500–800 subrange of the first three peak lists in the M1 dataset, in which 8 correspondence groups

are complete, and incomplete information is available for an additional 14 groups (omitting single

entry correspondence groups for visual clarity). The exploitation of partial correspondence groups

yields valuable constraints for guiding the RTDF curve through retention time space and provides

robustness in cases where single complete retention time observations show extreme values. The

latter is especially prevalent with the obvious outliers present in the mass range (m/z) 800–1100,

as illustrated in Supplementary Material K. SIMA uses all information available from the data

by including missing correspondences and can thus base estimates on larger effective numbers of

observations compared to other approaches (also cf. Supplementary Material K and L).

Hierarchical Correspondence Estimation Renders Distinguished Reference Spectra

Oobsolete. SIMA eliminates the problem of selecting a distinguished reference spectrum or peak

list, respectively. In practical applications, obvious reference candidates are neither easily obtained

nor guaranteed to exist. Consequently, SIMA based alignment is not subject to a reference bias

and independent of the peak list processing order.

SIMA is Robust with regard to Parameter Settings. Considering that for the proteomics

datasets the first fraction was used for parameter optimization, it is interesting to observe that

SIMA is not performing as well as, e.g., OpenMS on these fractions. Still, SIMA shows superior

performance on the remaining fractions, for which the parameters identified on the first sections

were used (cf. Supplementary Material J). This indicates that SIMA is not overly dependent
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Figure 6: Visualization of the alignment approach on the peak lists of the first three spectra of the
M1 dataset for the range of 500–800s in retention time: Only 8 peaks (dots) in this range could be
matched in all peak lists, whereas 14 peaks were additionally available in two of the three peak lists
only. Since these peaks contain information for two dimensions, but are non-informative for the
third, they are displayed by straight lines parallel to the coordinate axis of the missing information.
The computed retention time distortion function (red) still benefits from these straight lines as
they help pinpointing its optimal path through this area of few observations.

on parameter settings since it does not benefit from the overfitting on the first fractions where

parameters were adjusted to give optimal results, but also shows high quality results on datasets

where parameter optimization was not performed. This can at least partially be explained by

the fact that (given reliable charge state information) SIMA only requires two parameters in the

matrix W for correspondence estimation, which in our experiments have proven robust to changes.

Choosing a larger region for the correspondence estimation results in additional random data points

for the kernel regression. However, as long as those additional points are unstructured, they do

not bias the estimate for the RTDF, since our approach is robust to outliers. Choosing a smaller

region results in fewer data points and additional missing correspondences, which can be handled

as long as not all data points of a region are removed.

5 Conclusion

We introduced SIMA, a novel approach for the simultaneous alignment of multiple LC/MS peak

lists. SIMA is specifically tailored to the problems arising from large-scale experiments where only
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few peaks are consistently present in all runs. Thus, in contrast to many competing algorithms,

SIMA can naturally handle missing correspondences. In addition, it does not rely on a single,

error-free reference run as basis for an alignment, but weights the inherent measurement errors of

each run against each other.

SIMA requires only very limited user interaction, since it is robust with respect to its two

parameters, the thresholds for the tolerated retention time and m/z difference between two peaks.

Moreover, these parameters can typically directly be inferred from the expected measurement error

in the experiment.

An experimental comparison on real-world proteomics and metabolomics data to seven state-of-

the-art approaches demonstrates excellent performance of our method. While matching the recall

of MZ-mine 2 (RANSAC), the best performing method from previous comparisons (Lange et al.,

2008; Pluskal et al., 2010), it delivers the best precision and overall F-score values.

Conceptually, SIMA is not limited to the alignment of LC/MS data: By redefinition of the

thresholded squared Mahalanobis distance function, it can easily be adapted to any time series

with discrete events (cf. Supplementary Data A). SIMA is freely available from http://hci.iwr.uni-

heidelberg.de/MIP/Software.
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Supplementary Material

A: Adapting the Weight Matrix

In equation (1) of the manuscript, the diagonal thresholded squared Mahalanobis distance is de-

fined. This distance relies on a weight matrix W , given by W = diag−1(T 2
(m/z), T

2
(rt), T

2
z ). Note

that mass-to-charge ratio (m/z), retention time (rt), and charge state (z) are scale-invariant peak

features. As a consequence, SIMA can be applied to a broad range of data. For instance, it may

even be used to align LC/MS measurements of samples that exhibit different levels of up- or down-

regulation of certain proteins. In that case, scale-dependent features such as the difference in peak

intensity are suboptimal.

Nevertheless, some applications may require additional (potentially scale-dependent) features.

For instance, peak intensity might be useful if we can assume that the (relative) peak intensities

are constant over different runs (innately or after proper normalization). Integration of additional

peak features into SIMA is straightforward: We only need to redefine the weight matrix W as

W = diag−1(T 2
(m/z), T

2
(rt), T

2
z , T

2
(intensity)) (7)

where T 2
(intensity) controls the maximum permissible deviation in peak intensity between two mea-

surements (note that this parameter is scale-dependent). Thresholds on other peak features that

may be available from the previously used peak picking routine can be added analogously.
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B: Elliptical Equidistant Lines
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Figure 7: The figure shows peaks from two peak lists Pd (red crosses) and Pe (blue stars) in the
two-dimensional [(m/z), (rt)] domain. The threshold for the thresholded squared Mahalanobis
distance θ between peaks can be visualized by equidistant lines which in this case correspond to
ellipses centered at the peaks. A matching between peak p ∈ Pd and q ∈ Pe is feasible if both
peaks are located within the two corresponding ellipses.
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C: Storing the Correspondence Group Memberships

The hierarchical correspondence estimation described in the manuscript is an iterative procedure

that constructs peak correspondence groups, i.e. sets of peaks from the D original peak lists that

match each other. In the following, we describe the data structure that is used to protocol the

memberships of the original peaks in these correspondence groups.

Let G(t) be the set of correspondence groups in iteration t where G(0) = ∅. Assume that in

iteration t we combine the two most similar peak lists Pd and Pe in the current set P(t) of peak

lists that still have to be merged into a new peak list Pde that replaces the other two in P(t+ 1)

(see manuscript for details). For each peak correspondence pair, a new peak is constructed and

added to Pde. Let the peaks pi and pj form one such pair (i, j) in the set of peak correspondences

Fde of Pd and Pe. We store the correspondence of pi and pj by updating G(t) in the following

way:

• If neither pi nor pj are the result of a previous merging step, we create a new correspondence

group Gpipj
= {pi,pj} and add it to G(t), that is G(t) = G(t) ∪Gpipj

.

• If, in contrast, exactly one of these peaks was created by one or more merging steps in

preceding iterations, G(t) is updated as follows. Without loss of generality, assume that pi was

created by merging two or more peaks, whereas pj is one of the peaks in the original peak lists.

Further assume that the peaks that have been absorbed into p constitute correspondence

group Gpi
∈ G(t). We then merely set Gpi

= Gpi
∪ pj .

• If both peaks pi and pj are the result of merging steps in preceding iterations, G(t) is updated

as follows: Assume that the peaks that have been absorbed into pi constitute correspondence

group Gpi
and that the peaks that have been absorbed in pi constitute correspondence group

Gpj
. We then set Gpipj

= Gpi
∪Gpj

as well as G(t) = G(t) \ (Gpi
∪Gpj

) ∪Gpipj
.

These changes to G(t) are performed for all peak pairs in Fde, yielding G(t + 1). After the last

iteration of the hierarchical correspondence estimation G is used to construct the retention time

correspondence map C as described in the manuscript.
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D: Gradient of the Retention Time Ridge

The adaptive kernel K : x ∈ R
D → (0, 1) is defined as the outer product of two sigmoid functions

such that the estimated retention time distortion function fulfills the properties described in section

2.2 of the manuscript (monotonicity, order-independence, smoothness and robustness):

k(x, α) =
1

1 + e−αx
. (8)

We note that k(x, α) is differentiable. It holds that

∂k(x, α)

∂x
=

∂

∂x

1

1 + e−αx

= −
α e−αx

(1 + e−αx)2

= α

(
1 + e−αx

(1 + e−αx)2
−

1

(1 + e−αx)2

)

=
α

1 + e−αx
(1 −

1

1 + e−αx
)

= α k(x, α)(1 − k(x, α))

= α k(x, α)k(−x, α)

(9)

As described in section 2.2 of the manuscript, we perform gradient ascents on the retention time

ridge H (cf. eq. (5) of the manuscript). More precisely, these gradient ascents are performed within

the L hyperplanes given by the support vectors yl, l = 1, . . . , L. Confer to Supplementary Material

E for a more detailed description.

Given a single hyperplane Hl and iteration t we have to calculate the (D − 1)-dimensional

gradient

∇g(xl(t),1, . . . , xl(t),D−1). In the following we discard index t to keep the notation uncluttered. It
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holds that

g(xl,1, . . . , xl,D−1) = H̃(xl,1, . . . , xl,D−1, ϑ(xl,1, . . . , xl,D−1))

= 1
Ω

∑N
n=1 ω(cn)

[D−1∏

d=1

k̃(xd − cn,d, α)

︸ ︷︷ ︸

S1

· k̃(ϑ(xl,1, . . . , xl,D−1) − cn,D, α)
︸ ︷︷ ︸

S2

+

D−1∏

d=1

k̃(− [xd − cn,d] , α)

︸ ︷︷ ︸

S3

· k̃(−[ϑ(xl,1, . . . , xl,D−1) − cn,D], α)
︸ ︷︷ ︸

S4

]

.

(10)

Here, ϑ(·) is defined as in Supplementary Material E. With eqs. (9) and (10) the components of

the gradient can be obtained from

∇g(xl,1, . . . , x
l,D−1)i =

∂H̃

∂xi
=

1

Ω

N∑

n=1

ω(cn)
[

S′
1 · S2 + S1 · S

′
2 + S′

3 · S4 + S′
4 · S3

]

(11)

where

S′
1 = α k̃(−xl,i + cn,i, α)

∏D−1
d=1 k̃(xd − cn,d, α)

S′
2 = −η α k̃(−ϑ(xl,1, . . . , xl,D−1) + cn,D, α) k̃(ϑ(xl,1, . . . , xl,D−1) − cn,D, α)

S′
3 = −α k̃(xl,i + cn,i, α)

∏D−1
d=1 k̃(−xd − cn,d, α)

S′
4 = η α k̃(ϑ(xl,1, . . . , xl,D−1) + cn,D, α) k̃(−ϑ(xl,1, . . . , xl,D−1) − cn,D, α).

(12)
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E: Formulas for the Gradient Ascent

Let η be the normal vector of the hyperplanes Hl, l = 1, . . . , L which is parallel to the line of unit

slope, and yl ∈ R
D, l = 1, . . . , L be equidistant points on the line of unit slope that lie within the

Hl.

A point xl ∈ R
D lies on hyperplane Hl if xl,D = ϑ(xl,1, . . . , xl,D−1), where xl,D is the Dth

component of vector xl and ϑ : R
D−1 → R is given by the projection on the hyperplane

ϑ(xl,1, . . . , xl,D−1) =
1

ηD

(

yl · η −
D−1∑

d=1

xl,dηd

)

. (13)

For this choice of xl,D, the plane equation yl · η = xl · η holds. For every point xl ∈ Hl the

height g of the retention time ridge can then be calculated using eq. 5 from the manuscript in

g : R
D−1 → R : g(xl,1, . . . , xl,D−1) = H(xl,1, . . . , xl,D−1, ϑ(xl,1, . . . , xl,D−1)).

In iteration step t of the gradient ascent with current estimate xl(t) (where we set xl(0) = yl),

the normalized gradient direction δl(t) along which we search for the maximum is given by

δl(t) =
∇g(xl,1(t), . . . , xl,D−1(t))

||∇g(xl,1(t), . . . , xl,D−1(t))||
. (14)

We further estimate a feasible step size Ψl(t) with respect to the Powell-Wolfe conditions Powell

(1976) which leads to a more robust detection of the maxima (see Supplementary Material F). The

next estimate is then obtained from

xl(t+ 1) = xl(t) + Ψl(t)δl(t) (15)

and the iterations are stopped as soon as Ψl(t) falls below a user-defined threshold.
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F: Gradient Ascent Step Size Estimation

The step size for the gradient ascent in step t is estimated with an iterative approach where the step

sizes Ψl(t) are forced to fulfill the Powell-Wolfe conditions Powell (1976). For given β ∈ (0, 0.5),

γ ∈ (0.5, 1), xl(t) ∈ Hl, g(xl(t)), ∇g(xl(t)), and search direction δl(t) the step size Ψl(t) has to

fulfill the following inequalities:

g(xl(t) + Ψl(t)δl(t)) ≤ g(xl(t)) + Ψl(t)β∇g(xl(t))
T δl(t) (16)

∇g(xl(t) + Ψl(t)δl(t))
T δl(t) ≥ γ∇g(xl(t))

T δl(t) (17)

Setting G(Ψl(t)) := g(xl(t) + Ψl(t)δl(t)) we can rewrite these inequalities as

G(Ψl(t)) ≤ G(0) + βΨl(t)G
′(0) (18)

and

G′(Ψl(t)) ≥ γG′(0). (19)

−10 −8 −6 −4 −2 0 2 4 6 8

0

20

40

60

80

100

120

140

160

 

Ψ
l
(t) − 8

Powell Wolfe Condition

 

G(Ψ
l
(t))

G(Ψ
l
(t)) ≤ G(0) + β Ψ

l
(t) G’(0)

G’(Ψ
l
(t)) ≥ γ G’(0)

G’(0)

G(0)

Ψ
l
(t)

Ψ
l
(t)

β =0.4

γ =0.75
x

k
 =−8

Figure 8: Powell–Wolfe conditions: The lower bound for the step size estimator is the point where
the slope of G(Ψl(t)) is larger than γG(Ψl(0)). The upper bound is the intersection of G(Ψl(t))
with the line βΨl(t)G

′(Ψl(0)).
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The first inequality (16) describes an upper bound for the step size to avoid overly large steps

in the gradient line search. This bound is given by the line with slope βG′(0) that passes through

the point G(0) (see fig. 8). If the value of G(Ψl(t)) is above this line, Ψl(k) is too large to fulfill

the Powell–Wolfe condition. Values of Ψl(t) for which the slope of G(Ψl(t)) is larger than γG′(0)

are rejected as too small. We estimate the step size with an iterative algorithm that starts with

step size Ψl(t1) = 1 and adds or subtracts the value Ψl(t)
2 until the Wolfe condition is fulfilled.

The result Ψl(tΘ) that satisfies the Wolfe Condition is used as step size in the gradient ascent

algorithm.
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G: Assigning Weights to Correspondence Groups

In equations 5 and 6 of the manuscript, the influence of the correspondence points cn is controlled

by the weights ω(cn). Different choices are possible. In the manuscript we have used a constant

weight of 1 for all correspondence points. Alternatively, the cn can be weighted according to their

“completeness”, that is ω(cn) = 1/|cn|. Consequently, a correspondence group that comprises

peaks from four LC/MS runs will have twice the influence of a correspondence point that comprises

two peaks.

On one hand, weighting correspondence points according to their completeness seems to be more

natural, since correspondence groups to which more measurements have contributed intuitively

should receive higher weights. On the other hand, down-weighting of incomplete correspondence

groups only seems to be appropriate if the missing correspondences do not arise from measurement

inconsistencies or artifacts introduced by the peak picker. In that sense, it sometimes may be more

beneficial to rely on more local but less complete correspondence groups than on far away but

complete groups.

We have thus tested both strategies and have found that equal weights indeed work slightly

better on the Lange et al. Lange et al. (2008) data which was used in our experiments (see section

3 and 4 of our manuscript). Results are summarized in table 2.

data weighting scheme RE PR F
P1 equal 0.92 0.94 0.93

completeness 0.92 0.94 0.93
P2 equal 0.76 0.72 0.74

completeness 0.76 0.70 0.72
M1 equal 0.92 0.75 0.83

completeness 0.91 0.74 0.82
M2 equal 0.99 0.84 0.91

completeness 0.98 0.84 0.90

Table 2: Performance on the Lange et al. Lange et al. (2008) datasets for equal weights for cor-
respondence groups and weights according to their completeness. The former strategy performs
slightly better.
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H: Local Adaption of Kernel Parameter α

In the manuscript, we implicitly assume that the projections of the retention time ridge onto

the hyperplanes Hl are convex for all l = 1, . . . , L such that we can find global optima. This

assumption can be violated if the mean variation of the data points in a local neighborhood is

large. We therefore propose to locally adjust the parameter α that determines the sphere of

influence of the sigmoid kernel k(x, α) such that it is large where the data density is high and low

otherwise.

The area of influence of k(x, α) is defined by the interval I(k(x, α), ξ) =
[
−λ

2 ,
λ
2

]
which is

centered at zero and has diameter λ for which

k(−λ
2 , α) − k(λ

2 , α) = ξ, ξ ∈ (0, 1) (20)

holds. It can be shown that the dependence between the diameter λ of the sphere of influence and

the kernel parameter α is

1

1 + eα λ

2

−
1

1 + e−α λ

2

= ξ

⇒
λ

2
= −

ln(− ξ+1
ξ−1 )

α

α ∼
1

λ
.

(21)

We propose to estimate the kernel parameter α(x, C) for a given point x ∈ R
D from the retention

time correspondence map C ∈ R
N×D introduced in section 2.1 of the manuscript. Here α is

computed from the mean of the euclidean distances | · |rt of the 20 nearest points (i.e. rows cn

of C) in the D-dimensional retention time space. Missing correspondences, represented by zero

entries in cn are ignored during the computation of | · |rt.

α(x, C) =
1

1
20

∑

cn∈20NN |x − cn|rt

(22)

Note that the adaptive kernel parameter α is defined by the reciprocal of the mean distance which

can be seen as an estimate for the variance of the selected points in a local region. Consequently,

α becomes larger in areas of high data density (that have low variance) and smaller in areas of low

data density (that have higher variance). This ensures that the maximum likelihood estimation

of the retention time distortion function is precise in all scenarios. The adaptive method should

thus be preferred over methods using a global parameter α (also see Brockmann et al. Brockmann
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et al. (1993)).

Empirically, the result proved to be robust with respect to the exact number of nearest neighbors

that were used in the computation. Note that selecting a larger number of neighbors increases the

average distance of x to its neighbors. However, at the same time this also holds for all other

points x̃ in the retention time space. Thus, the algorithm is rather robust with respect to this

parameter, which does not have to be tuned by the user and was fixed for all experiments.
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I: Parameter Optimization

Parameters for the proteomics and metabolomics were optimized as described in Lange et al. Lange

et al. (2008). For the proteomics datasets (P1 and P2), the first fraction of the dataset was used for

parameter optimization. For the metabolomics datasets (M1 and M2), parameters were optimized

on the complete datasets.

Using a grid search we identified the parameters in table 3 as optimal for the various datasets

for the SIMA algorithm. Parameters for the other algorithms are described in Lange et al. Lange

et al. (2008) and Pluskal et al. Pluskal et al. (2010).

parameter P1 P2 M1 M2
T(rt) 125 350 40 40
T(m/z) 2.1 1.9 0.03 0.03

Table 3: Optimal parameters for the SIMA approach for the two proteomics and the two
metabolomics datasets of Lange et al. Lange et al. (2008).
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J: Detailed Results for the Proteomics Datasets

frac- measure ms- MZ-mine OpenMS Spec- XAlign XCMS MZ-mine 2 SIMA
tion Inspect Array (RANSAC)

00 RE 0.52 0.75 0.86 0.61 0.82 0.62 0.86 0.83
PR 0.38 0.81 0.86 0.61 0.82 0.58 0.86 0.86
F 0.44 0.78 0.86 0.61 0.82 0.60 0.86 0.85

20 RE 0.56 0.87 0.92 0.62 0.85 0.81 0.93 0.94
PR 0.45 0.88 0.92 0.62 0.85 0.80 0.93 0.97
F 0.50 0.87 0.92 0.62 0.85 0.80 0.93 0.95

40 RE 0.63 0.87 0.94 0.75 0.87 0.81 0.94 0.91
PR 0.48 0.90 0.94 0.75 0.87 0.80 0.94 0.94
F 0.54 0.88 0.94 0.75 0.87 0.80 0.94 0.92

60 RE 0.73 0.79 0.96 0.71 0.87 0.78 0.97 0.92
PR 0.54 0.84 0.96 0.71 0.87 0.75 0.97 0.94
F 0.62 0.81 0.96 0.71 0.87 0.76 0.97 0.93

80 RE 0.70 0.92 0.96 0.74 0.90 0.89 0.97 0.96
PR 0.57 0.94 0.96 0.74 0.90 0.88 0.97 0.98
F 0.63 0.93 0.96 0.74 0.90 0.88 0.97 0.97

100 RE 0.82 0.92 0.94 0.77 0.96 0.96 0.96 0.95
PR 0.56 0.94 0.94 0.77 0.96 0.96 0.96 0.96
F 0.67 0.93 0.94 0.77 0.96 0.96 0.97 0.95

All RE 0.66 0.85 0.93 0.70 0.88 0.81 0.94 0.92
PR 0.50 0.89 0.93 0.70 0.88 0.80 0.94 0.94
F 0.57 0.87 0.93 0.70 0.88 0.80 0.94 0.93

Table 4: Comparison of the results of seven current alignment approaches with SIMA based on
the P1 dataset of Lange et al. Lange et al. (2008) and Pluskal et al. Pluskal et al. (2010). Recall
(RE), Precision (PR) and the F-measure (F ) are reported for each fraction of the dataset as well
as an overall average of all fractions (All). MZ-mine 2 (RANSAC) shows the best overall recall,
and MZ-mine 2 (RANSAC) and SIMA tie for the highest values for precision. Although SIMA
was specifically designed for the alignment of many LC/MS runs, it performs second best on this
pairwise problem.
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frac- measure ms- MZ-mine OpenMS Spec- XAlign XCMS MZ-mine 2 SIMA
tion Inspect Array (RANSAC)

00 RE 0.23 0.77 0.77 0.07 0.65 0.58 0.56 0.61
PR 0.07 0.60 0.65 0.05 0.49 0.44 0.49 0.55
F 0.11 0.67 0.70 0.06 0.56 0.50 0.52 0.58

20 RE 0.67 0.87 0.92 0.57 0.84 0.86 0.93 0.89
PR 0.24 0.71 0.77 0.42 0.70 0.66 0.78 0.75
F 0.35 0.78 0.84 0.48 0.76 0.75 0.85 0.82

40 RE 0.44 0.79 0.76 0.60 0.71 0.72 0.78 0.75
PR 0.26 0.76 0.74 0.41 0.69 0.69 0.77 0.81
F 0.33 0.77 0.75 0.49 0.70 0.70 0.77 0.78

80 RE 0.73 0.61 0.80 0.65 0.58 0.49 0.61 0.63
PR 0.34 0.56 0.70 0.44 0.56 0.45 0.61 0.74
F 0.46 0.58 0.75 0.52 0.57 0.47 0.61 0.68

100 RE 0.82 0.80 0.90 0.63 0.85 0.85 0.88 0.89
PR 0.39 0.65 0.75 0.44 0.69 0.69 0.75 0.77
F 0.53 0.72 0.82 0.52 0.76 0.76 0.81 0.82

All RE 0.58 0.77 0.83 0.50 0.73 0.70 0.75 0.76
PR 0.26 0.66 0.72 0.35 0.63 0.59 0.68 0.72
F 0.36 0.71 0.77 0.41 0.67 0.64 0.71 0.74

Table 5: Comparison of the results of seven current alignment approaches with SIMA based on
the P2 dataset of Lange et al. Lange et al. (2008) and Pluskal et a. Pluskal et al. (2010). Recall
(RE), Precision (PR) and the F-measure (F ) are reported for each fraction of the dataset as well
as an overall average over all fractions (All). OpenMS shows the best overall recall, while OpenMS
and SIMA tie for the highest values for precision. OpenMS shows the overall best value in the
F-measure. OpenMS clearly outperforms our approach on the first fraction of the dataset, which
was used for the parameter optimization, while OpenMS and SIMA show similar behavior on the
remaining fractions.
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K: Visualization of the Alignment Approach for the Range of 800–1100s

Figure 9: Visualization of the alignment approach on the peak lists of the first three spectra of the
M1 dataset for the range of 800–1100s in retention time. Within this densely populated region
with many data points with complete information (black dots) as well as incomplete information
(straight lines) the retention time distortion function closely follows the bisecting line without
being influenced by obvious outliers.
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L: Histograms over Correspondence Groups

As table 6 and figure 10 show, many of the peaks can only be observed in few runs. Consequently,

many correspondence groups are incomplete, especially in cases where many different runs have

to be aligned. Discarding all these correspondence groups when aligning LC/MS datasets leads to

a significant loss of information. In contrast to most competing alignment algorithms, SIMA can

make direct use of incomplete correspondence information.

The overall numbers of correspondence groups for the sets P1, P2, M1, and M2 are 7139,

6669, 43696, and 73073. Note that correspondence groups of size one (single peaks) are not used

for alignment.

correspondence group size P1 P2
1 3670 1599
2 6938 5716
3 - 6636

Table 6: The table gives the total number of peaks in the two proteomics datasets P1 and P2.
Peaks are arranged by the size of the correspondence group to which they were assigned. Note that
P1 and P2 consist of two respectively three runs, so the maximum correspondence group sizes are
two and three. Peaks that belong to complete groups are printed in bold. As it can be seen, many
peaks are part of incomplete groups.
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Figure 10: The figures on the left show the total number of peaks in the metabolomics datasets
M1 and M2 (featuring 44 respectively 24 LC/MS runs). Again, peaks are arranged according to
the correspondence group sizes to which they were assigned. The peak numbers for groups of sizes
one (15683 and 29258) and two (27016 and 45552) are left out for improved visualization. On the
right, the histogram over peaks that occur in at least 50% of all runs are given.
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M: Performance in Case of Broad Eluting Peaks

As pointed out by one of our reviewers, broad eluting peaks might pose a challenging task for

alignment algorithms that work on peak lists, if the peak picker returns several peaks pi, i =

1, . . . ,M instead of one (that in reality all represent the same broad peak). This set of peaks may

highly differ between runs, rendering correct peak matching a difficult task. Although we argue

that this problem should rather be tackled by the peak picking software and not by the alignment

tool which does not have access to the raw data (which may be needed to decide which peaks

to merge), this problem may indeed arise in practice. It is thus interesting to discuss how SIMA

performs in such settings and how its parameters may be tuned to obtain satisfactory results.

By selecting a large threshold T(rt), it can be ensured that even peak correspondences with

large retention time deviations can be found such that the corresponding peaks can be matched.

However, this may come at a high cost, since other peaks which, for instance, stem from different

but close-by peaks may be wrongly matched due to the large threshold.

Thus, it may be more suitable to chose a smaller threshold T(rt) (e.g. according to the resolution

of the instrument) to ensure that different peaks are not combined. As a result, the peaks pi will

not all be merged into the same correspondence group, but multiple groups will evolve instead, each

of which will be incomplete. In contrast to other alignment approaches, SIMA can make direct use

of incomplete correspondence information. It is thus likely that SIMA would still provide robust

alignment results.
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