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Abstract. Magnetic resonance spectral images provide information on
metabolic processes and can thus be used for in vivo tumor diagnosis.
However, each single spectrum has to be checked manually for tumor-
ous changes by an expert, which is only possible for very few spectra in
clinical routine. We propose a semi-supervised procedure which requires
only very few labeled spectra as input and can hence adapt to patient
and acquisition specific variations. The method employs a discrimina-
tive random field with highly flexible single-side and parameter-free pair
potentials to model spatial correlation of spectra. Classification is per-
formed according to the label set that minimizes the energy of this ran-
dom field. An iterative procedure alternates a parameter update of the
random field using a kernel density estimation with a classification by
means of the GraphCut algorithm. The method is compared to a single
spectrum approach on simulated and clinical data.

1 Introduction

One major challenge in image processing is to exploit spatial correlation in 2-D
images. Certain imaging techniques, however, are not only able to record one
spatially resolved scalar signal, but provide a full vector of different features per
pixel. Spectral images are examples of such multidimensional data sets and are
in common use, e.g. in satellite remote sensing or non-invasive diagnostics. If
the mapped process can be assumed to exhibit some spatial correlation, combin-
ing the information of the spectral and spatial dimension will allow for better
decisions than the interpretation of one spectrum alone, especially with noisy
spectra. Often these two sources of information are processed in a consecutive
manner by first analyzing the spectral image spectrum-by-spectrum, and then
using the spatial context in a second post-hoc step on the label map resulting
from the spectrum-wise processing.
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Magnetic resonance (MR) spectroscopy is a non-invasive diagnostic method
used to determine the relative abundance of specific metabolites at arbitrary
locations in vivo. Characteristic changes in the spectral pattern can be linked
to specific changes of the tissue, providing means for the grading and local-
ization of tumors, e.g. in brain, breast and prostate [9]. Magnetic resonance
spectroscopic imaging (MRSI) allows to acquire such spectra on two- or three-
dimensional grids. Each spectrum is represented by a vector of several hundred
spectral channels and shows a low number of relevant resonance lines, e.g. 5-
10 for MR spectra of the brain. When searching for tumorous changes of the
spectrum, pattern recognition methods can be applied to evaluate the data in a
highly automated fashion and to guide the radiologist to the relevant regions of
the spectroscopic image. [6, 18, 11, 16, 23] process the spectral image spectrum
by spectrum and in [14] an approach is presented which incorporates spatial
information in the classification procedure.

Typically, a limited number of spectra are diagnosed manually by a physician,
providing patient-specific, diagnostic information on the tumor. In the follow-
ing we propose an approach for the detection and localization of brain tumors
which uses this information in a flexible, semi-supervised classifier for an adap-
tive processing of the complete spectral image. It allows to both process spectral
information and to exploit the spatial correlation of the data in a coherent, highly
adaptable framework (chapter 2). Our approach relies on common chemomet-
ric models in the classification of the spectral information and a spatial model,
motivated by Bayesian image processing, for the spatial regularization. Seeking
for a time-efficient implementation in the clinical setting, we propose an efficient
solver based on the GraphCut algorithm in an iterative strategy. Finally the
algorithm is tested on simulated and real data, with results shown in chapter 3.

2 Spatio-Spectral Classification Model

The classification of spatio-spectral data can be separated into two tasks: the
inference on the spectral signal alone, a learning problem on highly collinear
data, and the formulation of a spatial model on the resulting label map combin-
ing information from the single-voxel spectral model with a spatial smoothness
assumption on the labels.

2.1 Spectral Model

In the following let Xi = (X1
i , . . . , X

p
i ) represent a p-dimensional spectrum, and

Yi a binary random variable taking values in {0, 1}, with Yi = 0 for healthy and
Yi = 1 for tumorous tissue.

Given appropriate training data, the information of a spectrum Xi can be
mapped to low dimensional scores, e.g. to the probabilities of either showing
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characteristic tumorous changes of the spectral pattern (with posterior distri-
bution π(Yi = 1|Xi)), or to be within the normal range of spectra originating
from healthy tissue (π(Yi = 0|Xi)). The posterior probability can be estimated
with any method, linear (e.g. linear discriminant analysis, partial least squares
regression) or nonlinear (e.g. support vector machines, mixture discriminant
analysis), parametric or nonparametric, generative or discriminative. A regu-
larization, however, might be indicated, as collinearity between the channels of a
spectrum often leads to intrinsic dimensionalities well below the nominal length
of the feature vector.

In the current application we have chosen an approach which combines the
strong regularization of a chemometric spectral model and the variability of
a nonparametric classifier. By assuming a flat prior on the classes (π(Yi =
0) = π(Yi = 1)) and by Bayes’ rule, it suffices to estimate π(Xi|Yi = 0) and
π(Xi|Yi = 1) to predict the most probable assignment of the spectrum Xi. For
this, we used a Parzen kernel-density estimator with bandwidth chosen accord-
ing to Silverman’s “rule-of-thumb” [22] on a reduced feature subspace defined
by the first two principal components of an external training set.

2.2 Spatio-Spectral Model

All N spectra X = {X1, . . . , XN} lie, by acquisition, on a regular 2-D or 3-D
Cartesian grid. The task is to identify each spectrum Xi with either healthy or
tumorous tissue. It is assumed that a tumor is significantly larger than the spa-
tial sampling distance, leading to spatial smoothness of the predicted classes. In
order to incorporate this smoothness assumption into the spatio-spectral model,
a graph-based method was used. Thus the structure of the spectral image is rep-
resented by an undirected graph G = (S,E), with vertices S and edges E, with
each site s ∈ S representing a voxel of spectral acquisition and the set of edges
E representing the neighborhood relation and therefore, the spatial coupling of
the random variables {Yi}. In our experiments we chose the set E to be de-
rived from the rectangular 2-D Cartesian acquisition grid, i.e. a 4 neighborhood
system, which uses at most pairwise interactions between labels Y = {Yi} and
therefore keeps efficiency in inference and classification.

In order to explicitly model the spatial homogeneity assumption and to ex-
ploit the advantage of discriminatory models [19] if enough training data is avail-
able, the posterior distribution p(Y|X) is modeled as a DRF [13] with penalty
term given by a parameter-free function. The single-site potential is formulated
to reflect the information of the spectral model, and is given by

ssp(Yi|Xi) = − log π(Yi = 1|Xi) ·Yi − log π(Yi = 0|Xi) · (1−Yi) (1)

and the pair-potential, responsible for the spatial coupling of the labels, is

pp(Yi,Yj|X) =
{
ν · γ(Xi, Xj) · |Yi − Yj | if Xi ∼ Xj

0 else (2)
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where Xi ∼ Xj means that Xi and Xj originate from connected vertices,
γ(Xi, Xj) gives the penalty incurred when Yi and Yj are classified to different
classes, and ν governs the trade-off between the purely voxel based classification
and the spatial smoothness of the label map. For each spectral image X this in-
duces the following probability distribution on {0, 1}N , which is an Ising model
on Y given X [15]:

p(Y|X) =
1
Z

exp

− N∑
i=1

ssp(Yi|Xi)−
N∑

i,j=1

pp(Yi,Yj|X)

 (3)

and the sought classification is given as the maximum a posteriori (MAP) es-
timate of this distribution, which corresponds to using the Bayes estimator for
the zero-one loss function. According to ssp(Yi|Xi), the spectrum Xi is classified
to the most probable class. If two neighboring vertices si and sj are assigned to
different classes, a penalty γ(Xi, Xj) is incurred, which depends on the similar-
ity of the two spectra Xi and Xj . In contrast to the DRF as used in [13], the
penalty is given as a function and not inferred from training data, leading to a
significant decrease of the number of parameters to be estimated. In the current
model we have chosen the square root of the Perona-Malik tensor [20]

γ(Xi, Xj) =
1√

|Xi −Xj |2 + 1
(4)

with |Xi−Xj | denoting a distance between the features of Xi and Xj used in the
spectral model, i.e. in this case the Cartesian distance of the projection into the
subspace spanned by the first two principal components. The function penalizes
the assignment of different labels to neighboring spectra, unless they are very
dissimilar. An illustrative example is shown in figure 1. The amount of evidence
needed for such a classification is governed by the trade-off parameter ν.

A similar model for object extraction by GraphCut has been proposed by
Boykov and Funka-Lea [1]. If π(Yi = 0) = π(Yi = 1) ∀ i is assumed, this
DRF can be seen as a discrete formulation of the active-contours based level-set
approach to classification described in [4].

2.3 Semi-Supervised Solution

The posterior distributions π(Yi|Xi) are not known in the beginning, as a non-
parametric kernel-density estimator is used to model both class densities. To op-
timally adapt to different patients, this estimate is obtained in a semi-supervised,
patient dependent manner. In clinical practice, a limited number of spectra in
the MRSI is always checked and diagnosed by the physician. The resulting labels,
which are optimally adapted to the data, are used for the initialization of the
estimate of the posterior distributions π(X|Y = 0) and π(X|Y = 1). To this end,
a kernel density estimate is performed for each class separately, in the reduced
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Fig. 1. Point ‘x’ and its four neighbors ‘o’ with the posterior distribution in the feature
space of the spectral model and decision border indicated; Left: label of sample ‘x’ will
flip for low ν, due to different classification of ‘o’ and weak support for classification;
Right: label of ‘x’ has strong evidence and will not flip, though all neighbors are
classified differently.

two-dimensional feature space spanned by the first principal components of the
spectra. As the hand-assigned labels should not change in the iteration process
the single-site potentials for these spectra are changed to ssp(Yi|Xi) =∞·(1−Yi)
for a tumor label and ssp(Yi) =∞ ·Yi otherwise.

With this first estimate of the class distributions and with an initial value
for ν the classification, corresponding to the maximum probability state of the
distribution given in equation (3), can be efficiently calculated by using Bayes
theorem to obtain π(Yi|Xi) from π(Xi|Yi) and the GraphCut algorithm [3, 12, 2].
The latter is an instance of the MinCut/MaxFlow-algorithm from graph theory,
introduced to image segmentation by Greig et al. [8]. This results in an updated
classification of the spectra which, in the next iteration, is used for an update of
the kernel-density estimation used to obtain the single-site potentials via Bayes
theorem. These two steps are iterated until no spectra changes its classification
in subsequent iterations. In our experiments we found that hardly ever more
than four iterations were needed until convergence.

This iterative procedure obviously is a version of Dempster’s Expectation-
Maximization [5] with hard class assignments. It is essential for this approach
to start with a good initialization (Fig. 2). Using spectra showing an ambiguous
spectral pattern leads to a significantly worse classification result, compared to
an initialization with spectra showing a clear pattern for either class.

It is often desirable to show the confidence in the classification. To this end,
Gibbs sampling [7] from the posterior distribution p(Y|X) can be used, a Markov
Chain Monte Carlo method [21]. In order to employ a Gibbs sampler, the local
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Fig. 2. Simulated data described in chapter 3; Left: true classification, Middle: clas-
sification after initialization with spectra showing a clear spectral pattern, Right:
classification after initialization with spectra with ambiguous spectral pattern.

characteristics have to be known, which can easily be calculated to be

p(Yi|Y1, . . . , Yi−1, Yi+1, . . . , YN ,X) =
1
Ẑ

exp

ssp(Yi|Xi) +
∑
j:j∼i

pp(Yi,Yj|X)


(5)

with Ẑ denoting the normalization constant.

3 Experiments

The method was tested both on simulated data providing ground truth for a
quantitative analysis, and on real data in order to evaluate the practicability in
the clinical setting. The artificial data set consisted of 93 simulated MRSI-data
sets from three patients (representing three different tumor geometries) with 16%
noise on a 64×64-grid (for details see [10]). The first two principal components
were calculated in a leave-“one patient”-out fashion, and all spectra of the hold-
out patient were projected onto these directions. To imitate the physician, three
spectra, having a posterior probability of at least 95%, were randomly selected
per class for initializing the kernel-density estimation. The hyper-parameter ν
of the spatio-spectral coupling was optimized in an additional, internal cross-
validation loop. For evaluation the spatio-spectral classification was repeated
ten times with different initializations. For comparison, the classification with-
out coupling (ν = 0) was also tested.

The algorithm was also tested on 67 MRSI with a spatial resolution of 16×16
acquired from 14 patients under routine protocol during pre-therapeutic diag-
nostic and follow up on a 1.5T MR scanner at the German Cancer Research
Center (dkfz), Heidelberg. Standard signal processing comprised Fourier trans-
formation of the temporal resonance signal, water peak removal and phasing of
the spectrum to its real part. Spectra containing artifacts were singled out using
the NoN-score [17], and pair potentials in (2) involving these spectra were set to
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zero. The spectra were projected onto the first two PCA-directions calculated
from an independent, clinically validated set of spectra (for details see [18, 11]).

For the initialization of the algorithm on this clinical data set, two tumorous
and two healthy spectra were hand-selected and labeled in each MRSI. The trade-
off parameter ν depends on the spatial resolution of the MR scanner and the
signal-to-noise ratio of the acquired data. As both can be assumed constant and
since no ground truth was available, three MRSI slices from different patients
were randomly selected, hand-labeled and ν fixed to the value that gave the
smallest cross-validation error. Classification results were compared against the
single-voxel results of the external classifier already used in [18].

4 Results

Using the model (3) on the simulated data with the iterative optimization pro-
cedure described in chapter 2.3 on the simulated data, a mean accuracy of 98.7%
was obtained, with an average true positive rate of 97.5% for tumorous tissue
(standard deviation 17.0 · 10−4) and a true negative rate of 98.8% on healthy
tissue (standard deviation 6.6 ·10−4). The single-voxel classification without spa-
tial regularization reached a mean classification accuracy of 98.2%, with a true
positive rate of 94.3% for tumor (standard deviation 114 · 10−4), and 99.1% for
normal spectra (standard deviation of 5.4 · 10−4). The spatial regularization in-
creased the classification accuracy and reduced the variance, leading to better
classification results especially on tumorous tissue. Comparing the average over
500 samples from the posterior distribution (3) with the MAP estimate, calcu-
lated via GraphCut, shows the ambiguity of the classification only along the
tumor border, indicated by the blurred contours of the tumorous region (Fig. 3,
fourth image).
The low SNR of the data led to speckle noise and misclassification in the single-
voxel processing (Fig. 3), which was the main reason for the worse performance
of this approach. Spectra well within the healthy region which were classified as
tumorous (Fig. 3, third image) in the single spectrum approach, were classified
correctly if the spatially coupled model was used for classification (Fig. 3, second
image).

Adapting the algorithm to the different patients, by using the semi-supervised
initialization is of major importance for the good classification results. Using
spectra from a different patient in initializing the spectral model often led to
disastrous results, to the extent that the tumor is not detected at all or unneces-
sarily large regions are classified as tumorous (Fig. 4). Using the patient-specific
labels assigned by an expert as initialization for the spectral model guarantees
an automatic adaption to patient variation and ensures high-quality classifica-
tion, independent of patient characteristics. From the simulated data, we observe
that the main advantages of the spatio-spectral classification are on the one side
its ability to adapt optimally to the patient, by using the semi-supervised ini-
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Fig. 3. Top Left: ground truth; Top Right: MAP-estimate for posterior distribution;
Bottom Left: single-voxel based classification; Bottom Right: average over 500
samples from the posterior distribution in eq. (3).

Fig. 4. Left: ground truth; Right: solution of the spatio-spectral model by initializing
the density estimate with labeled spectra from a different patient.
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tialization, which ensures a highly accurate and reliable classification. On the
other hand, it is able to remove isolated misclassifications, depending on the
distinctiveness of the spectral pattern. A similar result might be achieved by
using morphological operators in a post-hoc processing step, but, in contrast to
the proposed approach, all “label islands” will be removed, irrespective of the
probability of the voxel belonging to the assigned class. Trading spatial smooth-
ness of the probabilistic result map with the support of a different classification
of neighboring spectra by their distance in feature space, is one of the main ad-
vantages of the presented approach.

On the real data set a high agreement between the results of the spatio-
spectral and single voxel approaches could be observed in those voxels which
were assigned a high confidence to one of the classes by the single voxel classi-
fier. Voxels with a less stringent assignment were preferably classified according
to their neighborhood by the spatio-spectral classifier. A detailed inspection of
these cases showed that a main source for these contradicting results was a low
quality of the respective spectra, e.g. caused by a low SNR or showing small
shifts of the resonance lines. Visual inspection of the spectrum belonging, for ex-
ample, to voxel (a) in the second image of figure 5 shows that a low data quality
was the most likely reason for an assignment to the “intermediate” class by the
single-voxel classifier of [18], while the spectral pattern was in fact “healthy”, a
label predicted also under a slight spatial regularization (Fig. 5, second image).
As a second example, pixel (b) is surrounded by six voxels of tumorous tissue.
The spatially regularized classification of the low quality spectrum leads to a
distinct “tumor” assignment as opposed to “intermediate” by the single-voxel
classifier. Here, the decision for “tumor” is in accordance with the visual inspec-
tion of the MR spectrum.

Comparing whole confidence maps of the single-voxel classification (Fig. 5,
third image) and the spatio-spectral model (mean over 500 samples from the
posterior (3), Fig. 5, fourth image), shows that a consideration of neighborhood
information increases the confidence in the assigned labels on low quality data
significantly.

Overall, we find that a main advantage of the spatio-spectral classification
is its ability to adapt optimally to the individual spectral image, by using the
semi-supervised initialization ensuring a highly accurate and reliable classifica-
tion. Using the patient-specific labels assigned by an expert as initialization for
the spectral model guarantees an automatic adaption to patient variation and
a high-quality classification, independent of patient characteristics. In addition,
the present approach is able to trade local support of a decision with the global
support from the labels in its neighborhood. While in a standard post-hoc pro-
cessing, for example, morphological operators remove all regions below a certain
size in the result map, irrespective of the spectral information of the voxels
belonging to these areas, the proposed spatio-spectral classification is able to
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Fig. 5. Top, Bottom Left: Single-voxel classification according to [18], red indi-
cating tumor, green indicating healthy, saturation indicating confidence in respective
classification, Top Right: MAP estimate of spatially restricted model (eq. 3) for area
indicated by white square in first image; Bottom Right: Average over 500 samples
from the posterior distribution (eq. 3) for area indicated by white square in third image
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remove isolated misclassifications depending on the distinctiveness of the spec-
tral pattern. On MRSI it is thus able to differentiate between misclassifications
resulting from low data quality, often resulting in random class assignments of
single spectra, and strongly supported labels of isolated tumor voxels in an oth-
erwise healthy neighborhood.

The model proposed in this chapter proves that adapting to patient character-
istics can be efficiently incorporated into spatially regularized models operating
both in spatial and spectral dimension of the magnetic resonance spectroscopic
image. By using a DRF with a very versatile single-site potential, obtained from
a class-wise kernel-density estimate, and a parameter-free penalty function, it is
possible to use the few labels generated in standard clinical procedure to segment
spectral images with optimal adaption to the patient. An iterative procedure us-
ing the GraphCut algorithm was introduced and the necessity of customization
to the patient and usage of spatial information was shown.
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