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Abstract. Visual recognition requires to learn object models from train-
ing data. Commonly, training samples are annotated by marking only
the bounding-box of objects, since this appears to be the best trade-
off between labeling information and effectiveness. However, objects are
typically not box-shaped. Thus, the usual parametrization of object hy-
potheses by only their location, scale and aspect ratio seems inappropri-
ate since the box contains a significant amount of background clutter.
Most important, however, is that object shape becomes only explicit once
objects are segregated from the background. Segmentation is an ill-posed
problem and so we propose an approach for learning object models for de-
tection while, simultaneously, learning to segregate objects from clutter
and extracting their overall shape. For this purpose, we exclusively use
bounding-box annotated training data. The approach groups fragmented
object regions using the Multiple Instance Learning (MIL) framework to
obtain a meaningful representation of object shape which, at the same
time, crops away distracting background clutter to improve the appear-
ance representation.

1 Introduction

Recognizing and localizing all instances of object categories in a novel query
image is a core task on the way to automatic scene understanding. Object detec-
tion typically proceeds by localizing object bounding-boxes (e.g. [1]), which are
parameterized by their location, scale and aspect ratio. A classifier is then eval-
uated for each detection window, thereby providing hypotheses that are ranked
by their score. Such approaches have proven to be very successful in bench-
marks, but there are two issues that remain unresolved. First, objects are not
box-shaped and so the detection window contains a significant amount of back-
ground clutter that tends to deteriorate the whole window’s classification result.
And indeed, even complex models like [1] are eventually based on a holistic repre-
sentation of the whole bounding-box, including the clutter. The second problem
is that object shape becomes only available for detection once the object has
been segregated from the background. To overcome both problems, not only
background suppression is required, but also a reasoning about the object shape
is essential. Recent work (e.g. [2]) in the field of segmentation has shown that
relying only on low-level cues is not enough. Furthermore, it appears reasonable
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to combine class-specific top-down information to achieve better results. The
purpose of this paper is to learn object models for detection by explicitly repre-
senting object shape and segregating it from the background, however, without
requiring manual segmentation of the training samples. Therefore, we propose
a model-based approach that does not require supervision, but automatically
learns object shape and appearance while segregating objects from background.
Since we use more than a mere bottom-up segmentation, we are able to capture
the overall object shape in a model-driven manner by grouping the corresponding
foreground regions.

Detection approaches which use shape information can be classified accord-
ing to the degree of supervision they require during training. On the one hand,
methods like ([3–5]) require ground-truth pixel-wise segmentation masks during
training. The main disadvantage is that such information is usually not available
for large-scale detection tasks or is tedious to obtain and so we are proposing an
automatic MIL learning-based approach to circumvent these shortcomings. On
the other hand, we have methods which only require bounding-box information
during training [6–12]. These methods differ in the way, how shape information
is integrated into the detection task. Pure bottom-up methods [6, 7] are suscep-
tible to segmentation artifacts. While [6] directly classifies bottom-up generated
segments using a k-nearest neighbor classifier, [7] computes hierarchical segmen-
tations to find object subtrees similar to those learned during training. [8, 9]
can be viewed as top-down approaches. [8] divides the bounding-box into cells
and infers an occlusion map by clustering the response scores of a linear SVM
on each cell, where occluded regions are defined as the groups with a negative
overall response. This approach does not use any shape information to train the
linear SVM. Furthermore, negative response scores can also be caused by occlu-
sion or by other factors, such as background or an uncommon shape. Based on
the model of [13], [9] attempts to capture the object’s shape by means of a fixed
number of coarse box-shaped patterns. Finally, methods like [11, 10, 12] attempt
to combine bottom-up and top-down cues. Gu et al. [11] proposed a method for
detection using regions. Starting with regions as the basic elements, a general-
ized Hough-like voting strategy for generating hypotheses is used (see [14] for
improvements to the idea of voting). The method’s drawbacks are twofold. First,
it needs a general sliding window classifier for verification, which does not take
shape into account. Second, ground-truth pixel-wise segmentation masks for the
training data are required. Recently, [10] proposed a method for object detec-
tion based on the category-independent figure-ground segmentation masks of
[15]. To train with only bounding-box information, the authors assume that the
best ranked segment within the bounding-box covers the entire object. This seg-
ment is thus used to learn a regression function that predicts the quality of query
segments. Consequently, the performance of their detection system is highly sus-
ceptible to the fact that the first bottom-up generated segment actually covers
the entire object. In datasets like PASCAL VOC we observe that in many images
this assumption is too strong. Finally, [12] utilizes multiple over-segmentations
to propose class-independent bounding-boxes for classification. However, the
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Fig. 1. Object representation (best viewed in color). We divide the bounding-box into
cells and calculate features on each cell. Inferring a foreground segmentation cell-mask
from unsegmented training data, we suppress the background features by setting the
corresponding cells to zero.

authors discard the shape information contained in the super-pixels. They sam-
ple at each pixel 5 different color features and utilize them within a standard
bag-of-words model to classify the object.

The paper is organized as follows. In Sec. 2 we explain how to suppress the
background and represent the shape of an object and in Sec. 3 we then describe
how to learn our model (without using pixel-wise segmentation masks in the
training stage) and infer the shape of an object using a MIL framework.

2 Model

2.1 Suppressing the Background

Detection window approaches like [16, 1] have demonstrated a good performance
in difficult benchmarks. Consequently, such a framework offers us a good basis
to implement our idea. The detection window is commonly divided into a grid
of cells and we learn object shape to suppress cells in the clutter and concen-
trate on the actual object. In this section we describe how to model a fore-
ground/background segregation.

Suppose an object Oj within image I is given and we assume for a moment
a pixel-wise foreground object’s segmentation is also given. In the next section
we will describe how to automatically learn a cell-accurate shape estimation for
the object’s foreground.

First, we divide the bounding-box j into an array of size l0 × h0. For each
cell we calculate a d−dimensional feature. This l0 × h0 × d matrix is called
φ̂0(p

j
0), where pj0 = (x, y) is the top-left position of the bounding-box in image

I. Specifically, in this paper we use histograms of oriented gradients (HoG) as
features. These widely used and fast to calculate descriptors capture the edge or
gradient structure that is very characteristic of local shape. Additionally, they
exhibit invariance to local geometric and photometric transformations ([1, 16]).
However, our framework is independent of this specific choice of features. A
combination of different descriptors (e.g. like in [12]) can be integrated into our
model and should enable further performance improvements.

The foreground of an object is modeled by defining a binary vector mj
0 ∈

B
1×l0h0 . This vector contains ones if the corresponding cell is covered by the
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Fig. 2. Left: the first column shows a detection and the last two columns the two most
similar prototypical segments. Right: Subset of prototypical segments for the category
cow.

object, otherwise it is zero. We call this vector mj
0 the root-cell mask for object

Oj — part-cell masks are introduced in Sec. 4.1. Using mj
0 we set to zero the

cells of φ̂0(p
j
0) corresponding to the zero entries in mj

0. Formally, the foreground
representation of object Oj is defined as

φ0(p
j
0,m

j
0) := (mj

0 ⊗ 1d)� φ̂0(p
j
0), (1)

where ⊗ defines the Hadamard-Product and � the element-wise multiplication.
Fig. 1 shows how to suppress the background of a bounding-box if a root-cell
mask for the object’s foreground is given.

2.2 Matching Objects

Due to different pose variations, occlusion and clutter, the foreground root-cell
masks mj

0 and mu
0 of two objects may differ substantially. Therefore, building

an euclidean dot product between the feature representations φ0(p
j
0,m

j
0) and

φ0(p
u
0 ,m

u
0 ) as [3] or [1] do, will lead to unstable matching scores. Rather than

using a simple dot product, we represent each object with a prototypical set
of shape segments C0 = {m̄ι

0}νι=1. This set of segments is automatically learnt
from unsegmented training data (see section 3.3 for more details). The idea is
to reduce the high intra-class shape variability by using a reduced number of
typical class-specific views of its shape. We then use a weighted sum to match
both representations. Precisely, the matching score is given by

d0(φ0(p
j
0,m

j
0), φ0(p

u
0 ,m

u
0 )) :=

1

ν

ν∑

ι=1

< a(mj
0, m̄

ι
0)φ0(p

j
0, m̄

ι
0), a(m

u
0 , m̄

ι
0)φ0(p

u
0 , m̄

ι
0) >, (2)

where

a(mj
0, m̄

ι
0) := exp

(
−β ∗ ‖mj

0 − m̄ι
0‖2

|m̄ι
0|

)
(3)

represents the dissimilarity score between the root-cell mask mj
0 and the proto-

typical root-cell mask m̄ι
0. The parameter β is obtained by cross-validation. In

our experiments, we obtained an optimal value in the range of 1.1± 0.1 for the
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different object classes. Here |m̄ι
0| represents the total number of active cells in

the prototypical root-cell mask m̄ι
0.

Equation (2) induces a Mercer kernel, since the sum of Mercer kernels is
a Mercer kernel again. By the “Kernel Trick“ we know, that there exists a
(possibly unknown) transformation Φ into a space in which the kernel (2) is
a scalar product. To keep the notation simple we identify Oj := Φ(φ0(p

j
0,m

j
0))

and refer to this scalar product as

< Oj ,Ou >CB:= d0(φ0(p
j
0,m

j
0), φ0(p

u
0 ,m

u
0 )). (4)

In praxis we do not require to evaluate the function Φ to learn our model, but
use the kernel values instead. By defining the kernel (2) we have integrated
both of our goals into the detection window approach: We suppress the features
corresponding to the background and robustly represent the shape of an object
through a prototypical set of shapes.

3 Learning

Let’s assume for the moment that for all objects Oj in the training data their
root-cell masks mj

0 containing the whole object foreground are given. The train-
ing set is denoted by {(Oj , yj)}. Here yj ∈ {1,−1} denotes the label of object
Oj = Φ(φ0(p

j
0,m

j
0)). In this special case, we could easily learn a discriminative

function

f(φ0(p
q
0,m

q
0)) =

∑

i∈SV

−yiαid0(φ0(p
q
0,m

q
0), φ0(p

i
0,m

i
0)) + b (5)

to classify the query object φ0(p
q
0,m

q
0) (SV is the set of support vectors). How-

ever, in contrast to [3], we are not provided with the foreground root-cell masks
mj

0 during training, but rather we automatically learn them from unsegmented
training data. This is described in the next section. Similar to [3], [10] assumes
that the best-ranked foreground segmentation mask of [15] covers the whole ob-
ject. In practice this assumption is, however, not valid: The second row of figure 3
shows the best ranked CMPC segments that lie within the object bounding-box.
None of them covers exactly the whole object.

3.1 Learning from Unsegmented Training Data

The question is now how to learn the classification function f if the foreground
root-cell masks mj

0 are not given during training?
Given a discriminatively trained function f , the problem of inferring the fore-

ground root-cell mask mj
0 for an object Oj can be formulated as

mj
0 = argmax

m0

f(φ0(p
j
0,m0)) (6)

i.e. the inference (6) is tackled by grouping cells in a model-driven, top-down
manner so as to maximize the classification score.
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Fig. 3. First row: We simultaneously detect and infer the object foreground. Second
row: We show our data-driven grouping from which we infer the foreground of our
object. For complex categories we can not assume that the first CMPC segment covers
the whole object.

We simultaneously learn the function f and solve the grouping problem by for-
mulating our problem in the Multiple Instance Learning (MIL) framework. Here,
a bag contains features corresponding to different root-cell masks. For positive
instances, at least one of these features correspond to the foreground of an ob-
ject. In the ideal case, a bag Bj

0 would contain all possible combinations of cells
within the bounding-box. Since this is not tractable, we describe in the next
section how to create a shortlist of meaningful groups in a bottom-up manner.
Suppose we obtain l different groups for a bounding-box j. The i-the group is
represented by a root cell mask mj

0i and build the set U j := {mj
0i}li=1. A bag is

then defined as

Bj
0 :=

{
φ0(p

j
0,m

j
0i)|mj

0i ∈ P (U j)
}|P (Uj)|

i=1
, (7)

where P (U j) is the power set of U j . If the bounding-box contains an object, the
label Yj of the bag Bj

0 is set to 1, otherwise it is −1. Using our kernel (2) the
problem of learning the function f transform into:

min
w0,b,ξ

1

2
‖w0‖+ C

∑

I

ξI (8)

s.t. ∀I : YI max
i∈I

(< w0,OI
i >CB +b) ≥ 1− ξI , ξI ≥ 0, (9)

here OI
i = Φ(φ0(p

I
0,m

I
0i)) are object hypotheses and denote the elements within

the bag I. Once the function f is learned, the inference problem (6) for a query
image is transformed into

mj
0 = argmax

mj
0i∈P (Uj)

f(φ0(p
j
0,m

j
0i)) (10)

In other words, in (10) we look for the “most“ positive instance within Bj
0 and

by doing this, we indirectly infer the corresponding root-cell segmentation mask
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mj
0 (s. first row of Fig. 3). In practice the optimization problem (8) is solved by

alternating the calculation of the hyperplane w0 and bias b with the calculation
of the margin for the positive bags: YI maxi∈I(< w0,OI

i >CB +b) (we used the
MIL solver of [17] but other approaches like [18] could also be used). This means
that for every positive bag we fix the “most“ positive instance and then we use
all other instances of the negative bags to learn a SVM using our Mercer kernel
(2). In our experiments we used this MIL formulation since it is effective, fast
(convergence is reached after a few iterations) and the performance was robust
for varying initializations. Specifically, we randomly chose an element for every
positive bags to initialize the algorithm.

In the first row of Fig. 3 we visualize the inference of the final foreground
root-cell mask mj

0, given a data-driven grouping of cells for the bounding-box.

3.2 Data-Driven Grouping

In this section we describe how to create a shortlist of candidate groups by means
of a data-driven grouping of cells for a given bounding-box. This is necessary to
render the inference problem (6) and the creation of bags (7) feasible.

Recently, [15] presented the combinatorial CMPC algorithm for generating
a set of binary figure-ground segmentation hypotheses {SI

t }Ns

t=1 for an image I.
In general we can not assume (see second row of Fig. 3 ) that the best ranked
segment covers the whole object (as in [10]). However, the pool of CMPC seg-
ments yields a good basis to obtain groups of pixels, which cover only parts of
the object. An example of our grouping can be seen in Fig. 3 (second row).

Given a bounding-box BBj in image I, the idea is to first weight each pixel-
wise segment SI

t generated by [15] with the ratio between the number of pixels
pkl belonging to the segment SI

t which lie outside the bounding-box and the
total number of pixels covered by the bounding-box |BBj | itself:

rjt :=
1

|BBj |
∑

kl

�[pkl∈SI
t ]
�[pkl �∈BBj ]. (11)

Only segments SI
t that fully lie within the bounding-box will get high scores,

while straddling segments will be penalized. We then take the weighted sum of
all segments which intersect the bounding-box and build a density map for this
bounding-box

Hj
kl :=

1

Ns

Ns∑

t

rjt ∗ �[pkl∈SI
t ]
�[pkl∈BBj ]. (12)

The values in this map map indicate which regions within the bounding-box
were consistently covered by CMPC segments SI

t . We then apply a mean-shift
clustering algorithm on this 2D density map Hj and enforce the connectedness
of each of the resulting groups. The cells covering each of these groups define
the root-cell masks mj

0i used to construct the bags in equation (7).
In practice, for bounding boxes containing an object, we typically obtain be-

tween 6 and 8 groups. For boxes in the background, our grouping algorithm
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typically does not generate any segment, since these regions are not covered by
a CMPC segment (the weights in Eq. 11 are zero). This situation renders feasible
an exhaustive search using inference (6). We favor mean-shift over other cluster-
ing methods because it allows an adaptive bandwidth for different clusters.

3.3 Learning a Prototypical Set of Segments

Our goal is to represent every object through a prototypical set of segments.
In section 2.2 we use such a representation to robustly match different object
instances. In this section we describe how to learn such a prototypical set.

The idea is to explain the shape complexity of a class through a reduced
number of segments that are typical for a certain class. Using the bottom-up
grouping described in section 2.2, we obtain for every positive training sample
j a bag Bj

0. To find those specific segments that appear frequently within the
class, we hierarchically cluster the elements of all positive bags (e.g. using Ward’s
method). Every group is then represented by its medoid, i.e. the element with the
minimal average dissimilarity (using measure (3)) to all the objects in the cluster.
The set of all medoids define the prototypical set of segments C0 = {m̄ι

0}νι=1 used
to train our model. The number of clusters is chosen using cross-validation and
ranges between 10 and 40 segments (s. Fig. 2).

4 Results

4.1 Implementation Details

We use a sliding window detection model similar to [1] to implement our idea.
The model in [1] describes an object Oj by means of a bounding-box covering
the entire object (root window) as well as eight smaller windows (about half
the size) that cover parts of the root window. Every part window i is divided
into a grid of cells of size li × hi, i = 1 . . . 8 and a HoG feature is calculated for
every cell. During training, weights (used as linear filters) are learnt for the root
window and additional 8 linear filters are trained for the parts. In our case, if we
ignore the parts for a moment, we first would need to learn the prototypical set
of segments using the positive training samples as described in Sec. 3.3 and then
learn the classifier (Eq. 5) as described in Sec. 3.1. To include the concept of parts
from [1], we will first introduce the notion of a bag for each of the part windows
and then extend our matching kernel (2) also for these parts. Thereafter, the
corresponding classifier can be trained analogously to [1] and thus we remit to
that work for further details.

Modeling Parts: Running the bottom-up grouping described in section 3.3
exclusively on the root window, results in the bags Bj

0 for each training sample

j (τ being the number of instances in each bag). We then define a bag Bj
i for

each of the part-windows as follows:

Bj
i := {φi(p

j
i ,m

j
ik)}τk=1, i = 1 . . . 8. (13)
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Here pji denotes the position of the i-th part-window for sample j. The binary

vector mj
ik ∈ B

lihi denotes the k-th part-cell segmentation mask of part i. It is

obtained by taking the overlap of part i with the root-cell mask mj
0k ∈ B

l0h0 .

In doing so, we obtain the feature representation φi(p
j
i ,m

j
ik) for the i-th part

(similar to Eq. (1)). Following this notation, the matching score of Eq. 2 between
two objects Oj ,Ou can be extended to include parts,

d(Oj ,Ou) :=

8∑

i=0

di(φi(p
j
i ,m

j
i ), φi(p

u
i ,m

u
i ))+ < pji − pj0, p

u
i − pu0 > . (14)

Here the last term compares the displacement of the i-th part w.r.t. the object
center. di(., .) denotes the matching score for part i defined as in Eq. (2). To
obtain di(., .) we also use a set of prototypical segments to represent each one
of the parts. This set is obtained in a similar way as for the root window by
hierarchically clustering the elements of all positive bags Bj

i . In practice, 7 pro-
totypical segments are used to represent each part. Using the kernel (14) we are
then capable of learning a discriminative function along the lines of (5).

4.2 Experimental Results

The purpose of our experiments is to show that if only bounding-box annotated
data is available during training, using a top-down generated prototypical rep-
resentation of the object shape, as well as suppressing the background within a
bounding-box, helps to improve pixel-wise object detection.

The methods of [10] and [11] are the most similar to ours and therefore pro-
vide us with a baseline for our results. Both methods present pixel-wise detec-
tion results exclusively on the ETHZ-Shape dataset ([19]). Specifically, [10] also
presents results for the PASCAL segmentation challenge. However, this challenge
assesses a simpler problem than that in our paper, since pixel-wise segmenta-
tion masks are used for training the model. For purposes of comparison with
state-of-the-art [10, 11] we also use the ETHZ-Shape dataset to test our model’s
performance. Larger and more complex datasets for object detection (e.g. INRIA
Horses or PASCAL VOC) are suboptimal to demonstrate this papers’ purpose,
since there are no pixel-wise masks for the whole test-set and measuring detec-
tion performance is only possible up to a bounding-box.

[10] is currently the state-of-the-art for pixel-wise detection on the ETHZ-
Shape dataset. This dataset contains 5 object categories and 255 images. We
follow the experimental settings in [19]. The image set is evenly split into training
and testing sets and performance is averaged over 5 random splits. Following
[11] and [10], we report pixel-wise average precision (AP) on each class. The
PASCAL criterion is used to decide if a detection is correct. The ground-truth
segmentation masks were provided by [11].

Our results are displayed in table 1. Our method outperforms the state-of-
the-art approach of [10] by 7% mean AP and our detection rate is comparable
with the detection rate at 0.02, 0.3 and 0.4 FPPI in [10] (see table 2).
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Table 1. Detection results for the ETHZ-Shape dataset. Performance is measured
as pixel-wise AP over 5 trials, following [10, 11]. For completeness, we include the
performance of [1] measured using a bounding-box parametrization. We improve state-
of-the-art by 7% AP.

Our Method Carreira etal. [10] Gu etal. [11] Felz. etal.[1]

Apples 0.963 ± 0.023 0.890 ± 0.019 0.772 ± 0.112 0.934 ± 0.048
Bottles 0.877 ± 0.011 0.900 ± 0.021 0.906 ± 0.015 0.891 ± 0.028
Giraffes 0.823 ± 0.038 0.754 ± 0.019 0.742 ± 0.025 0.817 ± 0.048
Mugs 0.885 ± 0.037 0.777 ± 0.059 0.760 ± 0.044 0.856 ± 0.073
Swans 0.927 ± 0.023 0.805 ± 0.028 0.606 ± 0.013 0.813 ± 0.125

Mean 0.896 ± 0.026 0.825 ± 0.012 0.757 ± 0.032 0.862 ± 0.051

For the sake of completeness, we also evaluate our model on the level of
bounding-boxes for the detected objects (standard setting). We used the INRIA
horses dataset, which contains 340 images. Half of the images contain one ore
more horses and the rest are negative images. 50 horse images and 50 negative
images are used for training. The remaining 120 horse images plus 120 negative
images are used for testing. Results are listed in figure figure 5. Compared to
[1], we improve state-of-the-art detection rate at 0.1 fppi by 3.5% achieve a gain
of 29% to the recent segmentation-based approach of [20].

Table 2. Detection rate at 0.02, 0.3 and 0.4, fppi on ETHZ-Shape. We reach compa-
rable pixel-wise detection rates to [10].

Our Method Carreira etal. [10] Gu etal. [11] Felz. etal.[1]

Apples 0.985/0.985/0.985 0.904/0.941/0.941 0.697/0.854/0.916 0.956/0.989/0.989
Bottles 0.860/0.975/0.975 0.891/0.975/0.975 0.745/0.932/0.958 0.835/0.981/0.981
Giraffes 0.830/0.924/0.924 0.920/0.970/0.970 0.543/0.736/0.800 0.675/0.936/0.943
Mugs 0.896/0.956/0.956 0.812/0.925/0.925 0.496/0.816/0.833 0.816/0.932/0.937
Swans 0.934/1/1 0.983/1/1 0.569/0.800/0.800 0.835/0.919/0.919

Mean 0.901/0.968/0.968 0.902/0.963/0.963 0.594/0.829/0.861 0.824/0.951/0.954

Next, we evaluate the impact of our bottom-up grouping (see section 3.2)
during training. For this experiment, the union of the first n best-ranked CMPC
segmentation masks of [15] lying within the bounding-box was taken to define
the bags (13). This setting would be equivalent to [10], which assumes that
the best bottom-up generated segment covers the whole object. We varied the
number of segments n and measured the detection performance in terms of
average precision (AP). The experiment was evaluated on the horse category of
PASCAL VOC 2007. The result is plotted in the left side of figure (6). For large
n the performance reaches that of [1], since eventually all cells of mj

0 are active.
Conversely, performance significantly drops as we approach n=1, which is the
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Fig. 4. Detection Re-
sults on ETHZ-Shape
classes. Our method
outperforms state-of-
the-art by 7% mean
AP reaching a compa-
rable detection rate at
0.02,0.3 and 0.4 FPPI

Method AP Det.rate at
0.1 FPPI

Our Method 0.883 0.902
[21] - 0.730
BoSS [20] - 0.630
[22] - 0.652
[23] - 0.674
[1] 0.871 0.867

Fig. 5. Detection results for the INRIA horses dataset. We improve [1] by 3.5% and
the segmentation-based approach [20] by 29.9% detection rate at 0.1 FPPI.

setting of [10]. Our full model is plotted as a constant line, since it is independent
of the number of segments generated by [15].

In a second experiment, we tested the impact of our bottom-up grouping dur-
ing testing. Instead of obtaining a bottom-up grouping for each sliding window,
we tested our model exclusively on all the CMPC segments. We considered the
tight bounding-box around each figure-ground segment SI

t for an image I and
used this segment to construct the bags Bj

i (in this case we have as many bags
as segments SI

t , see Eq. (13)). The experiment was carried out using the car cat-
egory of VOC 2007 (see right plot in figure 6). We observed a 7.3% performance
drop in AP. Hence, it is advisable to combine the different segments SI

t (as we
do) to obtain a better detection performance.

We also tested the impact of using a prototypical set of segments (see section
3.3) to represent object shape. Since the matching score (14) use a prototypical
set of segments to evaluate each di(., .), we trained in this experiment a linear
SVM using the euclidean dot product (instead of using di(., .)) between the
feature representations φi(p

j
i ,m

j
i ) for all parts. In this case the matching score

(14) is transformed into
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d̂(Oj ,Ou) :=

8∑

i=0

< φi(p
j
i ,m

j
i ), φi(p

u
i ,m

u
i ) > + < pji − pj0, p

u
i − pu0 > . (15)

In doing so, we obtained a very poor performance of 0.45 AP for the horse
category compared to the 0.578 AP of our model.

Fig. 6. Impact of bottom-
up grouping. Left: We
trained our model using
the union of the n best-
ranked CMPC segments.
Right: Test exclusively on
CMPC segments.

To the best of our knowledge, there is no approach which explicitly tries to
infer the overall object form using a model exclusively learnt from bounding-
box annotated training data for any category in the PASCAL dataset. In order
to compare our approach with other detection methods we evaluate our model
using the standard setting on those PASCAL VOC 2007 categories, where [1]
best performs. In table 3 and figure 7, we observe that our model exhibits robust
performance (43.68 MAP or Mean Average Precision) under challenging image
conditions at the same time that we obtain a richer output than just a bounding-
box for detection. While [1] (42.34 MAP) is considered as our baseline model,
we also listed comparable state-of-the-art detection methods. Due to the lack of
exact precision numbers, the multi-feature approach of [12] is not listed in table
3. However, from the diagram presented in their paper, we read an approximate
MAP of 42 for this set of categories. and of 40 if [1] is evaluated exclusively on
the proposed windows. Regardless of this, the strength of [12] remains in the
usage of 5 different color features to train a Bag-Of-Words model. While we use

Fig. 7. Detection examples for certain PASCAL VOC 2007 categories. The cells cor-
responding to the object foreground are grouped and used for detection.
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Table 3. AP for best performing categories of [1] in PASCAL VOC 2007

horse cow cat train plane car mbike bus tv bicycle sofa person

Our approach 57.8 25.3 23.9 47.8 31.9 59.8 49.8 51.6 41.9 59.8 33.7 41.9
Felz. etal. [1] 56.8 25.2 19.3 45.1 28.9 57.9 48.7 49.6 41.6 59.5 33.6 41.9
best2007 [26] 37.5 14.0 24.0 33.4 26.2 43.2 37.5 39.3 28.9 40.9 14.7 22.1
UCI [27] 45.0 17.7 12.4 34.2 28.8 48.7 39.4 38.7 35.4 56.2 20.1 35.5
LHS [13] 50.4 19.3 21.3 36.8 29.4 51.3 38.4 44.0 39.3 55.8 25.1 36.6
C2F [28] 52.0 22.0 14.6 35.3 27.7 47.3 42.0 44.2 31.1 54.0 18.8 26.8
SMC [29] 51.0 23.0 16.0 41.0 26.0 50.0 45.0 47.0 38.0 56.0 29.0 37.0
HStruct [30] 48.5 18.3 15.2 34.1 31.7 48.0 38.9 41.3 39.8 56.3 18.8 35.8
LatentCRF [31] 49.1 18.5 14.5 34.3 31.9 49.3 41.9 49.8 41.3 57.0 23.3 35.7
MKL [24] 51.2 33.0 30.0 45.3 37.6 50.6 45.5 50.7 48.5 47.8 28.5 23.3

a single, standard feature type, multi-feature approaches (e.g. [12, 24, 25]) are
complementary and should enable further performance improvements.

5 Conclusion

We have presented a model that explicitly represents object shape and seg-
regates it from the background, however, without requiring segmented training
samples. The basis of this method is to capture the overall object form by group-
ing foreground regions in a model-driven manner and representing it through a
class-specific prototypical set of segments automatically learnt from unsegmented
training data. By using exlcusively bounding-box annotated training data, our
model improves pixel-wise detection results and at the same time it provides a
richer object parametrization for detecting object instances.
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