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Generative Adversarial Text-to-Image Synthesis

Figure 1: A very recent applications of GANs has been to generate photo-realistic images. These
celebrity pictures are actually cherry-picked fakes. [5]

1 Introduction

This report aims at introducing the reader to the article “Generative Adversarial Text-

to-image synthesis” by Scott Reed and coauthors from 2016 [1].

Automatic synthesis of realistic images from conditioning information such as text,

speech or data from other domains would be interesting and useful, and recent AI sys-

tems have made large leaps towards this goal. Particularly, generic and powerful re-

current neural network architectures have been developed to learn discriminative text

feature representations in recent years. Meanwhile, deep convolutional generative ad-

versarial networks have begun to generate highly compelling images of specific cate-

gories, such as faces [2](see also Figure 1), “art” [3], and, classically, room interiors

such as bedrooms [4]. In the seminal work of Reed et al. from 2016 [1], a deep archi-

tecture and GAN formulation has been developed to effectively bridge these advances

in text and image modelling, translating visual concepts from characters to pixels.

In the following, we begin by classing the conditional image creation task in the context

of explainability in machine learning, followed by briefly summarizing the GAN concept

and proceeded by formalizeing a natural extension to it, the conditional GAN model.

3



1.1 A word on explainability

In many applications, neural networks are really good predictors, but mainly work as

“black boxes”. This is problematic for a number of reasons: How can trust in these

methods be established? Will these methods contribute to the advancement of science,

when they produce numbers from learning mere correlations, not (causal) insight? Is

there legal ground to challenge predictions that have been made by a machine learning

algorithm?

The paper “Generative Adversarial Text-to-image synthesis” adds to the explainabiltiy

of neural networks as textual descriptions are fed in which are easy to understand for

humans, making it possible to interpret and visualize implicit knowledge of a complex

method.

1.2 Generative Adversarial Networks (GAN)

Generative Adversarial Networks (GANs) have been introduced by Ian Goodfellow in

his groundbreaking 2014 paper [6] and have seen rapid development1 and many appli-

cations2 since.

Figure 2: A conceptual overview of the GAN training procedure. The generator G creates images
from random noise, while the discriminator D learns to differentiate between real
images from the training set and fake images from the generator.

GANs consist of two neural networks - a so-called generator G and a so-called dis-

criminator D that compete in a competitive process, allowing the derivation of gradient

1A timeline of GAN developments and extensions is available at https://github.com/dongb5/GAN-Timeline.
2A curated list of applications using GANs can be found at https://github.com/nightrome/really-awesome-gan.
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Generative Adversarial Text-to-Image Synthesis

signals: The discriminator is trained to distinguish real training data from synthesized

images, and the generator is trained to synthesize images from white noise with the sole

purpose of fooling the discriminator. More concisely, D and G play a minimax game on

V (D, G) that can be formalized as follows:

min
G

max
D

V (D, G) = Ex∼pdata(x)[log D(x)] +Ez∼pz(z)[log(1− D(G(z))] (1)

The optimization function of a naive GAN. The networks are optimized jointly (the two networks
receive gradient information from one another).

A graphical sketch of the GAN training procedure is shown in Figure 2. The probability

distributions of input and output spaces used in the above formulation can be subsumed

as follows:

X - data space

representing an image output from the generator or input to the discriminator of

normalized pixel values X = [0,1]W ×[0,1]H×C , where W , H represent the reso-

lution of the input images, and C usually depicts the set of distinct color channels

in the input images. Using the images in the training data and their associated

conditioning information, we can define a density function pdata(x , y) of images.

This is exactly the density function that GANs are encouraged to learn.

Z - noise space

used as a source of entropy, seeding the generative model. More formally, we get

Z = RdZ , where dZ is a hyperparameter representing the dimensionality of the

random input vector. Values z ∈ Z are sampled from a noise distribution pz(z).

Most commonly, pz is set to be simple Gaussian noise.

Ian Goodfellow proved that this minimax game has a global optimum precisely when

pg = pdata, and that under mild conditions (particularly, G and D have enough learning

capacity) pg converges to pdata. In practice, in the start of training, samples from G are

extremely poor and rejected by D with high confidence.

Using the above adversarial training procedure, generative adversarial networks (GANs)

provide a way to learn deep representations without extensively annotated training data.

They achieve this through deriving backpropagation signals from the competitive pro-

cess described above. The representations that can be learned by GANs may be used in

a variety of applications, including image synthesis, semantic image editing, style trans-

fer, image super-resolution and classification. We will now begin to derive how to use

GANs to generate realistic images from textual descriptions.
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1.3 Motivation for Conditional Generative Adversarial Networks (cGANs)

Shortly after the rise of naive GANs, the idea of conditional GANs has been brought up by

Mehdi Mirza and coauthor [7]. By establishing some arbitrary vectorized conditioning

information y and restricting both the generator in its output and the discriminator in

its expected input, we are able to encourage the generator to draw samples that reflect

whatever was encoded in y (while the discriminator learns alongside the generator).

Equivalently, we might think of this condition y as engaging both the generator and

discriminator in a particular mode of generation or prediction.

Following this logic, the loss function changes in the following way:

min
G

max
D

V (D, G) = Ex∼pdata(x)[log D(x |y)] +Ez∼pz(z)[log(1− D(G(z|y))] (2)

The optimization function of a naive GAN. The networks are optimized jointly (the two networks
receive gradient information from one another).

Here, X and Z keep their meaning of being data and noise space. In order to encode

textual information, the data are conditioned on y ∈ Y , where Y is the embedding

space.

Y - embedding space

used to condition the generative model on some external information such as text

embeddings. Hereby, Y = RdY , where dY is a hyperparameter. Using condition

information provided in the training data, we can define a density model py(y).

In the following chapter, we will talk about the abovementioned paper, using this

technique to condition on textual information.

In the paper to be discussed in the next chapter, y well be an embedding of textual

information (the particular technique used to vectorize sentences is “Deep symmetric

structured joint embedding” - we refer to the original paper for further information on

the technique3).

3An excellent introduction to word embeddings in general and Google’s word2vec in particular can be
found on https://www.tensorflow.org/tutorials/representation/word2vec
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2 Generative Adversarial Text to Image Synthesis

The contribution of the paper by Reed et al. [1] is to add text conditioning (particu-

larly in the form of sentence embeddings) to the cGAN framework. To that end, their

approach is to train a deep convolutional generative adversarial network (DC-GAN) con-

ditioned on text features encoded by a hybrid character-level recurrent neural network.

Both the generator network G and the discriminator network D perform feed-forward

inference conditioned on the text feature. The approach of the authors is to train a deep

convolutional generative adversarial network (DC-GAN).

2.1 Model architecture

The generator network can be denoted as G : RZ × RT → RD, the discriminator as

D : RD×RT → {0,1}, where T is the dimension of the text description embedding, D is

the dimension of the image, and Z is the dimension of the noise input to G. The network

architecture is illustrated in Figure 3.

Figure 3: A conceptual overview of the GAN training procedure. The generator G creates images
from random noise, while the discriminator D learns to differentiate between real
images from the training set and fake images from the generator.

First, in the generator G, samples from the noise prior z ∈ RZ ∼ N(0, 1) are drawn

and, using the text encoder φ, the text query t is encoded. The description embedding

φ(t) is first compressed using a fully-connected layer to a small dimension (in practice,

T = 128 is used) followed by leaky-ReLU and then concatenated to the noise vector

z. Following this, inference proceeds as in a normal deconvolutional network: feed-

forward the input signal through the generator G; a synthetic image x̂ is generated

via x̂ ← G(z,φ(t)). Image generation corresponds to feed-forward inference in the

generator G conditioned on query text and a noise sample. In the discriminator D,

several layers of stride 2 convolution with spatial batch normalization [8] followed by

leaky ReLU are performed. The dimensionality of the description embedding φ(t) is
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again reduced in a (separate) fully-connected layer followed by rectification. When the

spatial dimension of the discriminator is 4× 4, the description embedding is replicated

spatially and a depth concatenation is performed. Finally, a 1×1 convolution is applied,

followed by rectification and a 4 × 4 convolution to compute the final score from D.

Batch normalization is performed on all convolutional layers.

2.2 Training and Extensions

2.3 Matching-aware discriminator (GAN-CLS)

When training cGANs in a naive manner, the discriminator observes two kinds of in-

puts: real images with matching text, and synthetic images with arbitrary text. In that

case, it must implicitly separate two error sources: images that just seem non-natural

(irrespective of the textual description), and seemingly natural, realistic images that do

not match the conditioning information. Based on the intuition that this may compli-

cate learning dynamics, the authors modified the GAN training algorithm to separate

these error sources. In addition to the usual real/fake inputs to the discriminator during

training, a third type of input consisting of real images with mismatched text, which the

discriminator must learn to score as fake, is added. By learning to optimize image/text

matching in addition to the image realism, the discriminator can provide an additional

signal to the generator.

2.4 Learning with manifold interpolation (GAN-INT)

It has been shown earlier that deep networks learn representations of inputs that have

the nice property that interpolations between embedding pairs lie near the data man-

ifold. This allows the generation of a large amount of additional text embeddings by

simply interpolating between embeddings of training set captions. The fact that these

text embeddings have no correspondance to human-written text (and thus, no corre-

sponding training image) is not problematic - in the end, the discriminator D learns to

output the probability of an image and a text embedding matching. If D does a good

job at this, then by satisfying D on interpolated text embeddings G can learn to fill in

gaps on the data manifold in between training points (practically, this corresponds to

probabilities that are neither near 0 or 1).

This can be expressed mathematically as an additional minimization objective to the

generator:

Et1,t2∼pdata
[log(1− D(G(z,β t1 + (1− β)t2)))] (3)
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where z is drawn from the noise distribution and β is an interpolation hyperparameters

between text embeddings t1 and t2. The authors argue that β = 0.5 works well in

practice.

2.5 Inverting the generator for style transfer

If the text encoding φ(t) captures the image content (e.g. flower shape and colors),

then, in order to generate a realistic image, the noise sample z should capture style

factors such as background color and pose. With a trained GAN, one may wish to transfer

the style of a query image onto the content of a particular text description. To achieve

this, one can train a convolutional network to invert G to regress from samples x̂ ←
G(z,φ(t)) back onto z by using a simple square loss to train the style encoder

Lstyle = Et,z∼N(0,1)||z − S(G(z,φ(t)))||22 (4)

where S is the style encoder network. With a trained generator and style encoder, style

transfer from a query image x onto text t proceeds as follows: s← S(x), x̂ ← G(s,φ(t)),

where x̂ is the result image and s is the predicted style.

3 Experiments

3.1 Training details

The authors mainly used three datasets for their experiments: the CUB dataset of bird

images, Oxford-102 dataset of flowers (in this report, these results are omitted as they

are similar to the CUB ones) and the MS COCO dataset of more general scenes. The same

GAN architecture is used throughout all datasets. Training images were reshaped to 64×
64× 3. The text encoder produced 1024-dimensional embeddings that were projected

to 128 dimensions in both the generator and discriminator before depth concatenation

into convolutional feature maps. Generator and discriminator network are trained in

alternating steps, using a learning rate of 0.0002 and the ADAM solver (Ba AND Kingma,

2015) with momentum 0.5. The generator noise was sampled from a 100-dimensional

unit normal distribution.

3.2 Qualitative results

The authors compare the GAN baseline, GAN-CLS (i.e. with image-text matching dis-

criminator), GAN-INT (i.e. learned with text manifold interpolation) and GAN-INT-CLS
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which combines both. Results on CUB can be seen in Figure 4. Apparently, both GAN

and GAN-CLS only get some color information right whole the images do not look real.

If adding manifold interpolation (GAN-INT), the images become more realistic and usu-

ally match all or at least part of the caption.

Figure 5 shows results of a GAN-CLS on the more general MS-COCO dataset, display-

ing the generalization capability of the approach on a general set of images that contain

multiple objects and diverse backgrounds. On first sight, the resulting samples are pretty

sharp, similar to other GAN-based image synthesis models. Also, the model shows sam-

ples of large diversity when confronted with drawing multiple noise vectors and using

the same fixed text encoding. However, even if these results are encouraging at first,

upon close inspection it is clear that the generated scenes are not usually coherent; for

example the human-like blobs in the baseball scenes lack clearly articulated parts. In

future work, it may be interesting to add additional dependency constraints such as hi-

erarchical structures into the image synthesis model in order to better handle complex

multi-object scenes.

Figure 4: Zero-shot (i.e. conditioned on text from unseen test set categories) generated bird
images using GAN, GAN-CLS, GAN-INT and GAN-INT-CLS. We found that interpolation
regularizer was needed to reliably achieve visually-plausible results.
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Figure 5: Generating images of general concepts using our GAN-CLS on the MS-COCO validation
set. Unlike the case of CUB and Oxford-102, the network must (try to) handle multiple
objects and diverse backgrounds.

3.2.1 Manifold Interpolation

Figure 7 shows a visual representation of the learned text manifold by interpolation.

Although there is no ground-truth text for the intervening points (as these points cor-

respond to sentences “in between” other sentences), the generated images appear plau-

sible. It’s important to keep the noise distribution the same so thatthe only changing

factor within each row is the text embedding that we use. Notably, interpolations can

accurately reflect color information, such as a bird changing from blue to red while the

pose and background mostly stay the same.
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Figure 6: Transfering style from the top row
(real) images to the content from the
query text, with G acting as a deter-
ministic decoder. The bottom three
rows are captions made up by us.

Figure 7: Generated bird images by interpolat-
ing between two sentences (within a
row the noise is fixed).

3.2.2 Inverting the generator for style transfer

Figure 6 shows that GAN-INT-CLS with a trained style encoder can perform style transfer

from an unseen query image onto a text description - apparently, the images generated

using the inferred styles can accurately capture the pose information.

In several cases the style transfer preserves detailed background information such as

the angle and texture of a tree branch upon which the bird is perched.

4 Recent further work and Outlook

The paper “Generative Adversarial Text to Image Synthesis”, subsumed in this report,

was one of the earliest papers on applications of cGANs. Shortly after, the authors ex-

tended more thorough ideas in another paper - “Learning What and Where to Draw” [9]

where cGANs are equipped with information describing what content to draw in which

location. Other more recent articles on text-to-image synthesis include TAC-GAN [10]

and StackGAN [11], proposing a 2-stage process where one GAN sketches an image and

a second corrects the defects and adds more details and resolution. Some of their results

are pretty impressive (see figure 8).
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Figure 8: A selection of results of a trained StackGAN [11] comprised of two stages - the resulting
images already look rather realistic.

In the future, the recent advancements in “unconditional” image generation as shown

in the introductory chapter may be combined with a cGAN architecture to improve the

quality of generated images further. Some of the other most interesting use-cases span

the likes of Font Generation, 3D Object Generation, Image Editing, Face Aging, Domain-

transfer, Super-resolution as well as Synthetic Data Generation.
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