Expert-Level Artificial Intelligence in Heads-Up No-Limit Poker

Lasse Becker-Czarnetzki

University of Heidelberg Artificial Intelligence for Games SS 2019

July 11. 2019

- Introduction
- No-Limit Heads-up Texax Holdem
- Perfect Information strategies

2 DeepStack

- Re-solving (CFR)
- Depth limited search
- Counterfactual Value Networks
- Sparse lookahead trees

3 Evaluation

- Performanve against humans
- Exploitability (LBR)
- Nice features

4 Conclusion

Introduction No-Limit Heads-up Texax Holdem Perfect Information strategies

DeepStack

Introduction No-Limit Heads-up Texax Holdem Perfect Information strategies

Von Neuman on games

Real life is not like that. Real life consists of bluffing, of little tactics of deception, of asking yourself what is the other man going to think I mean to do. And that is what games are about in my theory.

von Neumann from a discussion recounted by Bronkowski (1973)

Perfect vs Imperfect information Games	DeepStack	Evaluation	Conclusion
Introduction No-Limit Heads-up Texax Holdem	Perfect Information strategies		
No-Limit Heads-up Te	xax Holdem		

- 2 player zero-sum game
- 4 Betting rounds on "who has the better cards"
- 2 Hold cards (private) (3, 4, 5) public cards.
- $-> 10^{160}$ decision points

Perfect vs Imp	perfect information Games	DeepStack	Conclusion
	No-Limit Heads-up Texax Holdem	Perfect Information strategies	
Poker	Terms		

- Bigblind
- Fold

- Check
- Call
- Bet (raise)
- Flop (Pre-Flop)
- Turn
- River
- range

Perfect vs Imperfect information Games	DeepStack	Evaluation	Conclusion
Introduction No-Limit Heads-up Texax Holdem	Perfect Information strategies		

Poker Game Tree

DeepStacl

Conclusion

Introduction No-Limit Heads-up Texax Holdem Perfect Information strategies

Introduction No-Limit Heads-up Texax Holdem Perfect Information strategies

DeepStack

Introduction No-Limit Heads-up Texax Holdem Perfect Information strategies

DeepStac

Introduction No-Limit Heads-up Texax Holdem Perfect Information strategies

DeepStack

Evaluation

Conclusion

Introduction No-Limit Heads-up Texax Holdem Perfect Information strategies

Problems for imperfect information games

July 11. 2019

DeepStack

Perfect vs Imperfect information Games	DeepStack	Conclusion
Introduction No-Limit Heads-up Texax Holdem	Perfect Information strategies	
Questions		
Questions		

- How can we forget supergames without using necessary information?
- How do we solve a subgame when their are no definite states to start from?
- How do we evaluate a state, when we can't use a single value to summarize a position?

Perfect vs Imperfe		DeepStack		Conclusion
${\sf Re}{\sf -solving} \ ({\sf CFR})$	Depth limited search	Counterfactual Value Networks	Sparse lookahead trees	

Re-solving

Perfect vs Imperfect infor		DeepStack		Conclusion
Re-solving (CFR) Depth	limited search Counterfac	tual Value Networks Spars	e lookahead trees	

Re-solving

Perfect vs Imperfect information Games	DeepStack		Conclusion
Re-solving (CFR) Depth limited search	Counterfactual Value Networks	Sparse lookahead trees	

Re-solving

Evaluation

Conclusion

Re-solving (CFR) Depth limited search Counterfactual Value Networks Sparse lookahead trees

- **Counterfactual:** "If i had known"...
- Regret: "how much better would i have done if i did something else instead?
- Minimization: "what strategy minimizes my overall regret?
- Average strategy over i iterations = approximation to Nash Equilibrium

DeepStack

Evaluation

Conclusion

Re-solving (CFR) Depth limited search Counterfactual Value Networks Sparse lookahead trees

 Perfect vs Imperfect information Games
 DeepStack
 Evaluation
 Conclusion

 Re-solving (CFR)
 Depth limited search
 Counterfactual Value Networks
 Sparse lookahead trees

 Perfect vs Imperfect information Games
 DeepStack
 Evaluation
 Conclusion

 Re-solving (CFR)
 Depth limited search
 Counterfactual Value Networks
 Sparse lookahead trees
 Conclusion

Continual Re-solving

- At every action we re-solve the subgame
- We need our range and opponents counterfactual value "What-if" (expected value) opponent reaches public state with hand x.
- 3 scenarios for updating range and CFVs.
 - own action: CFVs = CFVs(action) Update range via Bayes rule
 - Chance action: CFVs = CFVs(chance action) Eliminate impossible card combos.
 - Opponents action: Do Nothing

 Perfect vs Imperfect information Games
 DeepStack
 Evaluation
 Conclusion

 Re-solving (CFR)
 Depth limited search
 Counterfactual Value Networks
 Sparse lookahead trees

Depth limited search

Perfect vs Imperfe		DeepStack		Conclusion
${\sf Re}{\sf -solving}\;({\sf CFR})$	Depth limited search	Counterfactual Value Networks	Sparse lookahead trees	

Depth limited search

Perfect vs Imperfect information Games	DeepStack		Conclusion
${\sf Re-solving}~({\sf CFR})~~{\sf Depth}~{\sf limited}~{\sf search}$	Counterfactual Value Networks	Sparse lookahead trees	

Solutions

- Search from a set of possible states, re-solving multiple times.
- Remember players range and opponents counterfactual values
- Get evaluation through Deep Counterfactual value networks

Evaluation

Conclusion

Re-solving (CFR) Depth limited search Counterfactual Value Networks Sparse lookahead trees

DeepStack elements summary

DeepStack

Evaluation

Conclusion

Re-solving (CFR) Depth limited search Counterfactual Value Networks Sparse lookahead trees

Deep Counterfactual Value Networks

Evaluation

Conclusion

Re-solving (CFR) Depth limited search Counterfactual Value Networks Sparse lookahead trees

Deep Counterfactual Value Networks

- 2 Networks: Flop Network, Turn Network
- Auxiliary network (Pre-Flop)
- Simple FFNN (7 layers, 500 Nodes, ReLU)
- outer network to fit values for zero-sum game
- input: Pot sizes, public cards, players ranges
- output: Counterfactual Values (Players, Hands)

Perfect vs Imperfe		DeepStack		Conclusion
Re-solving (CFR)	Depth limited search	Counterfactual Value Networks	Sparse lookahead trees	

Training

- Randomly generated Poker situations.
- Turn network: 10M, Flop network:1M
- Turn network used for depth-limited lookahead in Flop Network training.

DeepStack

Conclusion

Re-solving (CFR) Depth limited search Counterfactual Value Networks Sparse lookahead trees

Sparse lookahead trees

Perfect vs Imperfect information Games	DeepStack		Conclusion
Re-solving (CFR) Depth limited search	Counterfactual Value Networks	Sparse lookahead trees	

Abstraction?

- Traditionally abstraction was used to simplify the game
- Action abstraction Card abstraction
 - -> Translation Errors
- Deepstack only uses action abstraction in lookahead
- Card clustering is used for NN input.

Perfect vs Imperfect information Games	DeepStack	Evaluation	Conclusion
Performanve against humans Exploitability (LBR)	Nice features		
Evaluation			

- Exploitability Play against humans
- Problems with Variance(Luck) -> 100.000 Hands for statistical significance
 AIV/AT 2k Hands
 OOk normal hands
 - -> AIVAT 3k Hands = 90k normal hands

Performanve against humans Exploitability (LBR) Nice features

Pro players experimental results

Perfect vs Imperfect information Games	DeepStack	Evaluation	Conclusion
Performanve against humans Exploitability (LBR)	Nice features		
Pro players experimenta	al results		

Player	R	lank	Hands	Luck Adjusted Win Rate	Unadjusted Win Rate
Martin Sture		1	3000	70 ± 119	-515 ± 575
Stanislav Voloshin		2	3000	126 ± 103	-65 ± 648
Prakshat Shrimankar		3	3000	139 ± 97	174 ± 667
Ivan Shabalin		4	3000	170 ± 99	153 ± 633
Lucas Schaumann		5	3000	207 ± 87	160 ± 576
Phil Laak		6	3000	212 ± 143	774 ± 677
Kaishi Sun	0	7	3000	363 ± 116	5 ± 729
Dmitry Lesnoy	2	8	3000	411 ± 138	-87 ± 753
Antonio Parlavecchio		9	3000	618 ± 212	1096 ± 962
Muskan Sethi	-	10	3000	1009 ± 184	2144 ± 1019

Perfect vs Imperfect information Games	DeepStack	Evaluation	Conclusion
Performanve against humans Exploitability (LBR)	Nice features		

Exploitability

Any Stack Size

Heads-up Freezeouts

Conclusion

- DeepStack beats Pro Poker player in No-Limit Heads-Up Holdem for the first time
- Connects Perfect information AI heuristical search strategy with imperfect information AI
- Plays with Nash Equilibrium approximated strategy
 - -> Doesn't exploit weaker players.
- No Multiplayer
- Can't explain moves but strategy tips can be taken away from DeepStacks play.

References

- Matej Moravcík and Martin Schmid and Neil Burch and Viliam Lisý and Dustin Morrill and Nolan Bard and Trevor Davis and Kevin Waugh and Michael Johanson and Michael H. Bowling DeepStack: Expert-Level Artificial Intelligence in No-Limit Poker Science, 2017
- N. Burch, M. Johanson, M. Bowling Proceedings of the Twenty-Eighth Conference onArtificial Intelligence(2014) pp. 602–608

References

- [3] M. Bowling, N. Burch, M. Johanson, O. Tammelin Science 347 145 (2015)
- [4] Todd W. Neller and Marc Lancto An introduction to counterfactual regret minimization. InProceedings of Model AI Assignments The Fourth Symposium on Educational Advances inArtificial Intelligence (EAAI-2013), 2013
- [5] www.deepstack.ai
- [6] www.depthfirstlearning.com/2018/DeepStack
- [7] https://www.youtube.com/watch?v=qndXrHcV1sM

Thank You for Listening Any Questions?