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Perfect vs Imperfect information Games

Introduction No-Limit Heads-up Texax Holdem Perfect Information strategies

Von Neuman on games

Real life is not like that. Real life
consists of bluffing, of little tactics
of deception, of asking yourself
what is the other man going to think
| mean to do. And that is what
games are about in my theory.

von Neumann from a discussion

recounted by Bronkowski (1973)
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Perfect vs Imperfect information Games

No-Limit Heads-up Texax Holdem

No-Limit Heads-up Texax Holdem

m 2 player zero-sum game
m 4 Betting rounds on "who has the better cards”

m 2 Hold cards (private) (3, 4, 5) public cards.
—> 109 decisionpoints
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Perfect vs Imperfect information Games

No-Limit Heads-up Texax Holdem

Poker Terms

m Bigblind

= Fold

m Check

m Call

m Bet (raise)

m Flop (Pre-Flop)
m Turn

m River

m range
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Perfect vs Imperfect information Games

No-Limit Heads-up Texax Holdem

Poker Game Tree

PRE-FLOP

[FILEI

TURN
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Perfect vs Imperfect information Games

Perfect Information strategies

Perfect information game
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Perfect vs Imperfect information Games

Perfect Information strategies

Perfect information game

V(ie) = e
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Perfect Information strategies

Perfect information game
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Perfect vs Imperfect information Games

Perfect Information strategies

Problems for imperfect information games
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Perfect vs Imperfect information Games
Perfect Information strategies

Questions

m How can we forget supergames without using necessary
information?

m How do we solve a subgame when their are no definite states
to start from?

m How do we evaluate a state, when we can't use a single value
to summarize a position?
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DeepStack
Re-solving (CFR)

Re-solving

DeepStack:
» re-solving
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DeepStack
Re-solving (CFR)

Counterfactual Regret Minimization

m Counterfactual: "If i had known"...

m Regret: "how much better would i have done if i did
something else instead?

m Minimization: "what strategy minimizes my overall regret?

m Average strategy over i iterations = approximation to Nash
Equilibrium
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DeepStack

Re-solving (CFR)

Counterfactual Regret Minimization

Regrets = [0,—50,50] ‘

Hypothetical
Reward = $0
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DeepStack

Re-solving (CFR)

Counterfactual Regret Minimization

Regrets = [0,0]

Regrets = [0,~50,50] #

Hypothetical
Reward = $0
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DeepStack
Re-solving (CFR)

Counterfactual Regret Minimization

Reward = -$500

Hypothetical
Reward = $0
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DeepStack
Re-solving (CFR)

Continual Re-solving

m At every action we re-solve the subgame

m We need our range and opponents counterfactual value
"What-if" (expected value) opponent reaches public state
with hand x.

m 3 scenarios for updating range and CFVs.

m own action: CFVs = CFVs(action) — Update range via Bayes
rule

m Chance action: CFVs = CFVs(chance action) — Eliminate
impossible card combos.

m Opponents action: Do Nothing

July 11. 2019 DeepStack Lasse Becker-Czarnetzki 19 / 38



DeepStack

Depth limited search

Depth limited search

DeepStack:
» depth-limited CFR
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DeepStack

Depth limited search

Depth limited search

V() =
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DeepStack

Depth limited search

Solutions

m Search from a set of possible states, re-solving multiple times.
m Remember players range and opponents counterfactual values

m Get evaluation through Deep Counterfactual value networks
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DeepStack

Depth limited search

DeepStack elements summary

Action history

\ Agent’s range
S Ranges
L’-\ Opponent counterfactual values

Current public state
\ Public tree
Agent's possible actions Sampled poker
\ situations
Lookahead tree
Neural net [see B]

\ Subtree

Values
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DeepStack

Counterfactual Value Networks

Deep Counterfactual Value Networks

(INVERSE)
BUCKETING BUCKETING

T CARD
FEEDFORWARD ZER COUNTERFACTUAL
NEURAL NET NEU VALUES

7 Hidden Layers Output Zero-sum Output
« fully connected Bucket Error Counterfactual
« linear, PReLU values values
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DeepStack

Counterfactual Value Networks

Deep Counterfactual Value Networks

m 2 Networks: Flop Network, Turn Network

m Auxiliary network (Pre-Flop)

m Simple FFNN (7 layers, 500 Nodes, ReLU)

m outer network to fit values for zero-sum game
m input: Pot sizes, public cards, players ranges

m output: Counterfactual Values (Players, Hands)
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DeepStack

Counterfactual Value Networks

Training

m Randomly generated Poker situations.
m Turn network: 10M, Flop network:1M

m Turn network used for depth-limited lookahead in Flop
Network training.
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DeepStack

Sparse lookahead trees

Sparse lookahead trees

A
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DeepStack

Sparse lookahead trees

Abstraction?

m Traditionally abstraction was used to simplify the game

m Action abstraction — Card abstraction
—> Translation Errors

m Deepstack only uses action abstraction in lookahead

m Card clustering is used for NN input.
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Evaluation

Performanve against humans Exploitability (LBR) Nice features

Evaluation

m Exploitability — Play against humans
m Problems with Variance(Luck) —> 100.000 Hands for

statistical significance
—> AIVAT 3k Hands = 90k normal hands

50 mbb/g

0 790

Lasse Becker-Czarnetzki
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Evaluation
Performanve against humans

Pro players experimental results
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Evaluation

Performanve against humans

Pro players experimental results

: ._ . ) Luck Adjusted Unadjusted

Player Rank Hands Win Rate Win Rate

Martin Sture — 1 30000 704 119 al15 < 875
Stamislav Voloshin = 2 00K 126 &= 103 G5 Lih
Prakshat Shomankar =t 3 3000 139 4 a7 174 4 GGT
Ivan Shabalin | 4 3000 170 4 99 153 33
Lucas Schaumann L 5 3000 07 4 57 160 576
Pinl Laak = i 30000 2124 143 T G677
Kaishi Sun Bl 7 3000 BT+ 118 54+ 720
Dmitry Lesnoy € & 3000 {11 + 138 87T+ 753
Antonio Parlavecchio 11 9 S00K) Gl8 + 212 LG 062
Muskan Setha ﬂ_- ([ 3000 1005 4 184 2144 &+ 1019
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Evaluation
Exploitability (LBR)

Exploitability

DeepStack '16

AllCards '15

(100BB)

Act1'16

Slumbot '16

Hyperborean '14

Always Fold

o

1250 2500 3750 5000

mbb/g
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Evaluation

Nice features

Nice to know

Thinking Time: 3s / action
7.2s / hand

July 11. 2019 DeepStack Lasse Becker-Czarnetzki



Evaluation

Nice features

Nice to know

Any Stack Size
Heads-up Freezeouts
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Conclusion

Conclusion

m DeepStack beats Pro Poker player in No-Limit Heads-Up
Holdem for the first time

m Connects Perfect information Al heuristical searrch strategy
with imperfect information Al

m Plays with Nash Equilibrium approximated strategy
—> Doesn’t exploit weaker players.

m No Multiplayer

m Can't explain moves but strategy tips can be taken away from
DeepStacks play.
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Thank You for Listening
Any Questions?
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