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No-Limit Heads-up Texax Holdem

2 player zero-sum game
4 Betting rounds on ”who has the better cards”
2 Hold cards (private) (3, 4, 5) public cards.

–> 10160decisionpoints
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Poker Terms

Bigblind
Fold
Check
Call
Bet (raise)
Flop (Pre-Flop)
Turn
River
range
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Poker Game Tree
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Problems for imperfect information games
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Questions

How can we forget supergames without using necessary
information?
How do we solve a subgame when their are no definite states
to start from?
How do we evaluate a state, when we can’t use a single value
to summarize a position?

July 11. 2019 DeepStack Lasse Becker-Czarnetzki 11 / 38



Perfect vs Imperfect information Games DeepStack Evaluation Conclusion
Re-solving (CFR) Depth limited search Counterfactual Value Networks Sparse lookahead trees

Re-solving

July 11. 2019 DeepStack Lasse Becker-Czarnetzki 12 / 38



Perfect vs Imperfect information Games DeepStack Evaluation Conclusion
Re-solving (CFR) Depth limited search Counterfactual Value Networks Sparse lookahead trees

Re-solving

July 11. 2019 DeepStack Lasse Becker-Czarnetzki 13 / 38



Perfect vs Imperfect information Games DeepStack Evaluation Conclusion
Re-solving (CFR) Depth limited search Counterfactual Value Networks Sparse lookahead trees

Re-solving

July 11. 2019 DeepStack Lasse Becker-Czarnetzki 14 / 38



Perfect vs Imperfect information Games DeepStack Evaluation Conclusion
Re-solving (CFR) Depth limited search Counterfactual Value Networks Sparse lookahead trees

Counterfactual Regret Minimization

Counterfactual: ”If i had known”...
Regret: ”how much better would i have done if i did
something else instead?
Minimization: ”what strategy minimizes my overall regret?
Average strategy over i iterations = approximation to Nash
Equilibrium
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Continual Re-solving

At every action we re-solve the subgame
We need our range and opponents counterfactual value
”What-if” (expected value) opponent reaches public state
with hand x.
3 scenarios for updating range and CFVs.

own action: CFVs = CFVs(action) – Update range via Bayes
rule
Chance action: CFVs = CFVs(chance action) – Eliminate
impossible card combos.
Opponents action: Do Nothing
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Solutions

Search from a set of possible states, re-solving multiple times.
Remember players range and opponents counterfactual values
Get evaluation through Deep Counterfactual value networks
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DeepStack elements summary
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Deep Counterfactual Value Networks

2 Networks: Flop Network, Turn Network
Auxiliary network (Pre-Flop)
Simple FFNN (7 layers, 500 Nodes, ReLU)
outer network to fit values for zero-sum game
input: Pot sizes, public cards, players ranges
output: Counterfactual Values (Players, Hands)
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Training

Randomly generated Poker situations.
Turn network: 10M, Flop network:1M
Turn network used for depth-limited lookahead in Flop
Network training.
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Abstraction?

Traditionally abstraction was used to simplify the game
Action abstraction – Card abstraction
–> Translation Errors
Deepstack only uses action abstraction in lookahead
Card clustering is used for NN input.
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Evaluation

Exploitability – Play against humans
Problems with Variance(Luck) –> 100.000 Hands for
statistical significance
–> AIVAT 3k Hands = 90k normal hands
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Pro players experimental results
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Exploitability
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Conclusion

DeepStack beats Pro Poker player in No-Limit Heads-Up
Holdem for the first time
Connects Perfect information AI heuristical searrch strategy
with imperfect information AI
Plays with Nash Equilibrium approximated strategy
–> Doesn’t exploit weaker players.
No Multiplayer
Can’t explain moves but strategy tips can be taken away from
DeepStacks play.
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Thank You for Listening
Any Questions?
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