## Level-0 Models for Predicting Human Behaviour in Games

Michael Hartmann

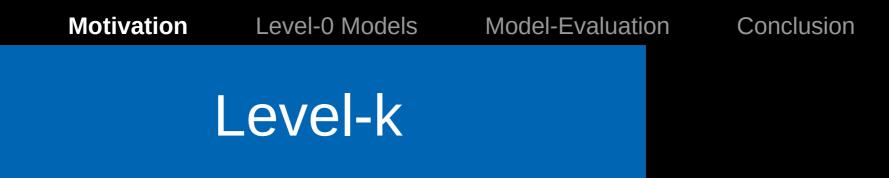
Seminar AI in games - SS19

Conclusion

## Behavioural Game Theory

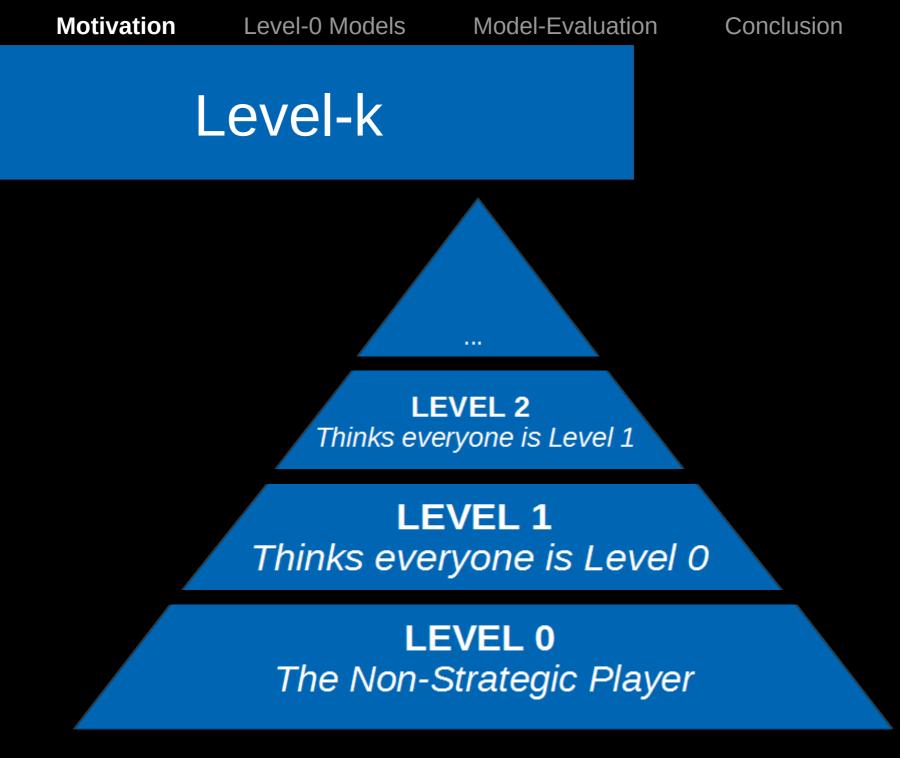
- Sometimes game theory recommends actions that seem counter-intuitive
- Example: "Travellers Dilemma"

Do people actually follow them?



## "Player types are drawn from a hierarchy of smartness analogous to the levels of iterated rationalizability"

-Stahl, D. O. (1993). Evolution of Smart<sub>n</sub> Players



## **Cognitive Hierarchy**

- A Player does not necessarily fall under one of these archetypes
- Assumptions can be made about mixed populations
- E.g. 50% Level-0, 50% Level-1

Is this a model for human behaviour?

Conclusion

## Quantal Cognitive Hierarchy

- Cognitive Hierarchy doesn't account for human mistakes
- Humans don't always go for the best response



Michael Hartmann

Seminar AI in games - SS19

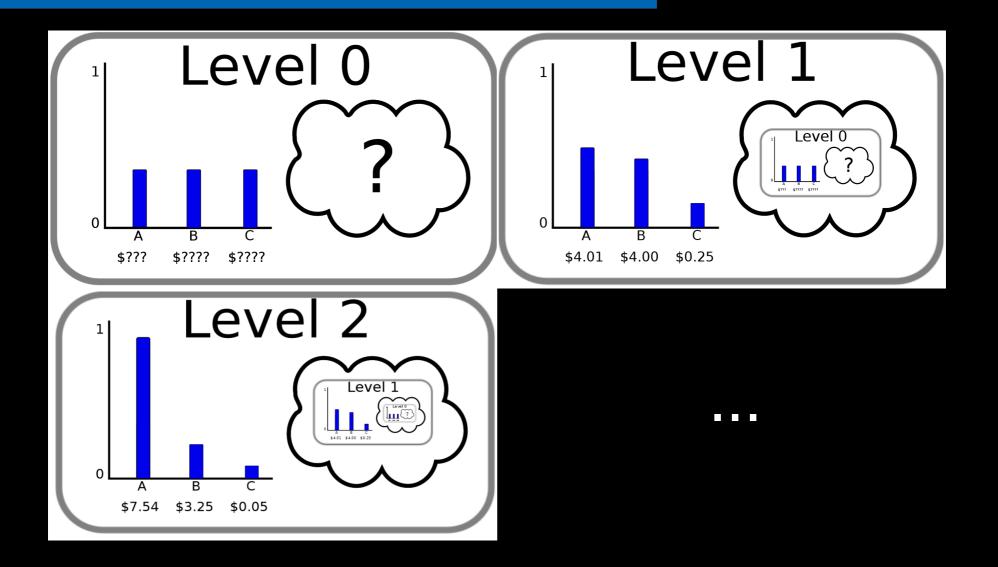
## **Quantal Best Response**

**QBR**<sub>i</sub>( $s_i$ ; G,  $\lambda$ ) always returns a single mixed strategy  $s_i$ 

$$s_i(a_i) = \frac{\exp[\lambda * u_i(a_i, s_{-i})]}{\sum_{a'_i \in A_i} \exp[\lambda * u_i(a'_i, s_{-i})]}$$

- $\mathbf{u}_{i}(\mathbf{a}_{i}, \mathbf{s}_{i}) =$  expected utility of **agent** i when playing action  $\mathbf{a}_{i}$ against mixed strategy profile **s**.
- $\lambda$  = Precision  $\rightarrow$  Agents Sensitivity to utility differences

## Iterative reasoning



Conclusion

## Quantal Cognitive Hierarchy

Poisson-QCH model:

$$\pi_{i,0:m} = \sum_{l=0}^{m} \frac{Poisson(l;\tau)}{\sum_{l'=0}^{m} Poisson(l';\tau)} \pi_{i,l}$$

• The truncated distribution over actions predicted for an agent of level  $0 \le l \le m$ 

Conclusion

## Quantal Cognitive Hierarchy

• Predicted action distribution:

$$\pi_{i,0}(a_i) = |A_i^{-1}|$$
  
$$\pi_{i,m}(a_i) = QBR_i(\pi_{-i,0:m-1};\lambda)$$

• Two parameters:  $\lambda$  (precision) and au (mean of Poisson distribution)

Experiment

#### Pick a number from 0 to 100, with that number representing your best guess of **two-thirds of the average** of all chosen numbers.

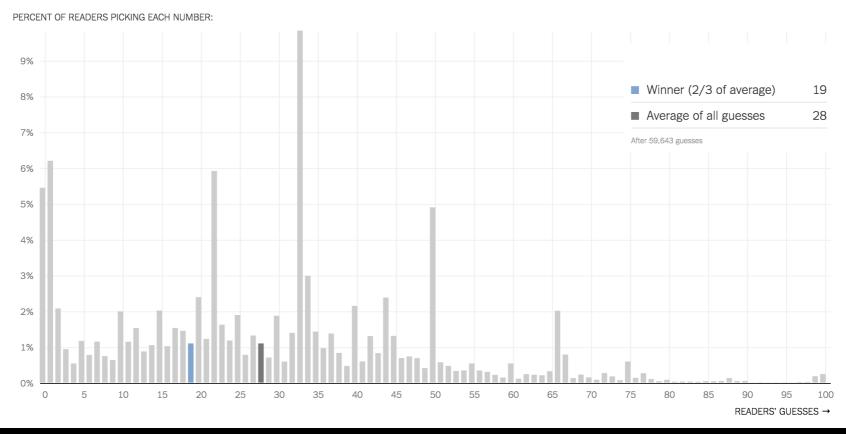
For example: Is the average of all numbers 63, you would win by picking 42. (No decimals or fractions)If the average is 40, you'd win by picking 27.Reason about the other people!

Conclusion

## Quantal Cognitive Hierarchy

**New York Times Results** 

(59,643 guesses)



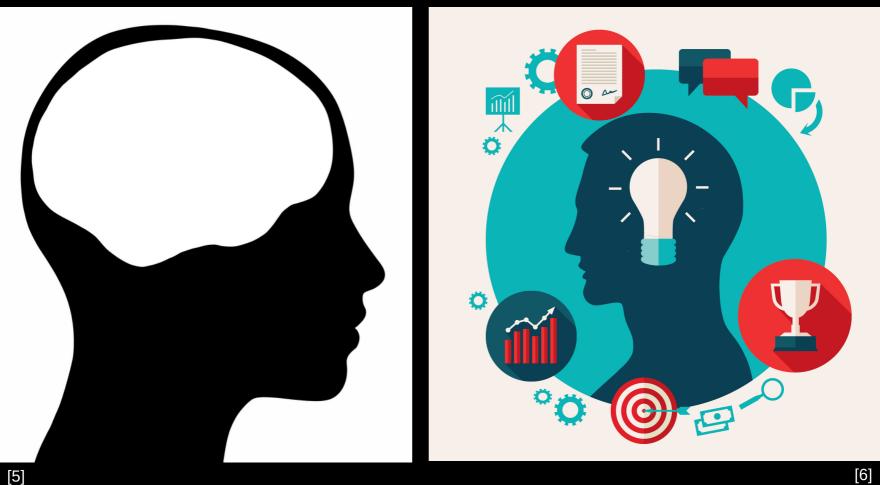
[4] nytimes.com/interactive/2015/08/13/upshot/are-you-smarter-than-other-new-york-times-readers.html

Conclusion

# What's the problem with current models?

#### Level 0

Level > 0



## Level-0 Models

I. What is non-strategic behaviour?II. What are Level-0 Features?III. How do we select a Model?

## Non-strategic behaviour

- It doesn't have to be uniform!
- May take account of payoffs
- Not responding to explicit beliefs about other agents behaviour
  - $\rightarrow$  Level-1 and higher = strategic
- can be computed via a finite combination of elementary agent models

## Non-strategic behaviour

#### Elementary Agent Model:

An agent model for agent i is a function  $f_i(G)$  that maps from a normal-form game G to a vector of reals with dimension  $|(A_i)|$ . An agent model is elementary if it can be computed as  $f_i(G) = h_i(\Phi(G))$ , where:

- i)  $\Phi(G)_a = \phi(u(a))$  for every action profile a,
- ii)  $\phi(u(a)) = w^T u(a)$ .  $\phi(u(a))$  is computed by taking a linear combination of the players utilities at pure action profile a with the weights defined by a vector w in  $\mathbb{R}^n$

## Level-0 Features

- The models are driven by certain rules ("features")
- One or more actions are recommended to greater or lesser degree
- Can be computed directly form the normal form

## Level-0 Features

- 1. Maxmin payoff The best worst case
- 2. Maxmax payoff The best best case
- 3. Minimax regret The minimal maximal regret
- 4. Maxmax fairness The "fairest" action
- 5. Max symmetric The best response to oneself
- 6. Maxmax welfare The best sum of utilities

We define a binary- and a real-valued version of each feature!

MotivationLevel-0 ModelsModel-EvaluationConclusionLevel-0 Feature<br/>combinationF = set of features.<br/> $w_f \in [0,1]$  with  $\sum_{f \in F} w_f \leq 1$ <br/> $w_0 = 1 - \sum_{f \in F} w_f$ 

Weighted Linear level-0 specification

$$\pi_{i,0}^{linear,F}(a_{i}) = \frac{w_{0} + \sum_{f \in F} w_{f}f(a_{i})}{\sum_{a'_{i} \in A_{i}} \left[w_{0} + \sum_{f \in F} w_{f}f(a'_{i})\right]}$$

*Logit level-0 specification* 

$$\pi_{i,0}^{logit,F}(a_{i}) = \frac{\exp(w_{0} + \sum_{f \in F} w_{f}f(a_{i}))}{\sum_{a'_{i} \in A_{i}} \exp(w_{0} + \sum_{f \in F} w_{f}f(a'_{i}))}$$

Michael Hartmann

Motivation Level-0 Models Model-Evaluation Conclusion

## Level-0 Features informativeness

- Are all these features always relevant?
- Do we always get a 'good' recommendation?

|                 |   | Α                   | B            | С            |
|-----------------|---|---------------------|--------------|--------------|
| <b>Player 1</b> | Х | 100 <mark>20</mark> | <b>10 67</b> | <b>30 40</b> |
|                 | Y | 40 35               | <b>4950</b>  | 90 70        |
|                 | Z | <b>40 21</b>        | 42 22        | <b>41 23</b> |

#### Plaver 2

Conclusion

## Level-0 Features informativeness

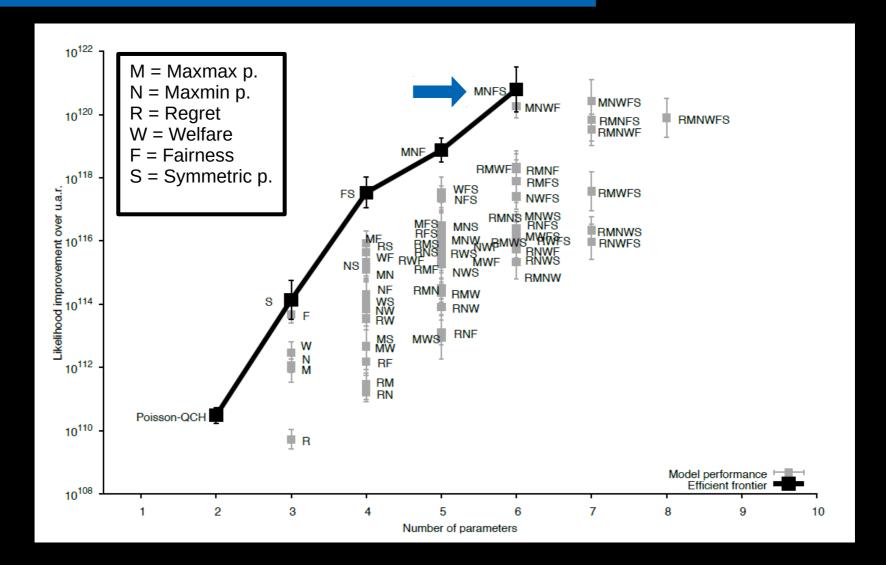
#### **Player 2**

|   |   | Α                   | В            | С            |  |  |  |
|---|---|---------------------|--------------|--------------|--|--|--|
|   | Х | 100 <mark>20</mark> | <b>10 67</b> | <b>30 40</b> |  |  |  |
| 1 | Y | 40 35               | <b>49 50</b> | 90 <b>70</b> |  |  |  |
|   | Z | <b>40 21</b>        | 42 <b>22</b> | <b>41 23</b> |  |  |  |

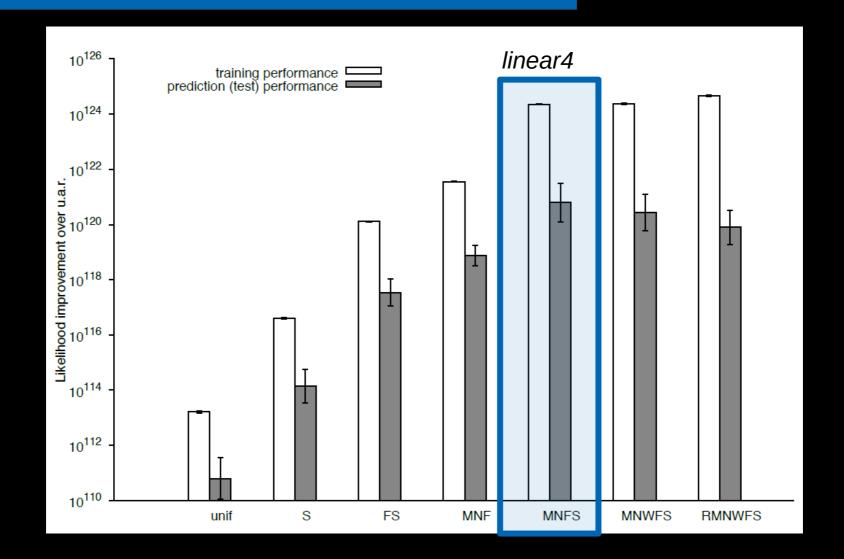
Maxmin payoff
Minimax regret

Player

## Model selection



## Model selection

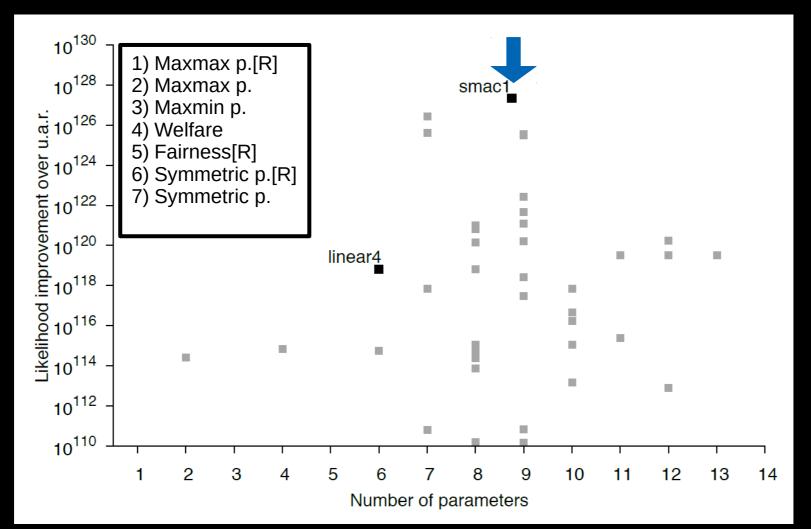


Motivation Level-0 Models Mo

**Model-Evaluation** 

Conclusion

## Model selection (Bayesian optimization)



First random training/test split

Motivation Level-0 Models

**Model-Evaluation** 

Conclusion

## Model selection (Bayesian optimization)



First random training/test split

Motivation Level-0 Models Model-E

**Model-Evaluation** 

Conclusion

## Model selection (Bayesian optimization)

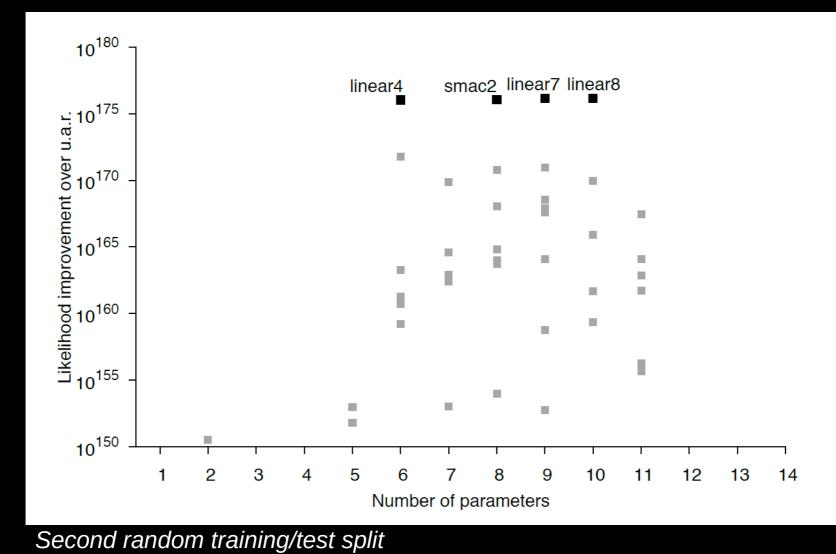
# smac1 linear7 linear8

Motivation Level-0 Models

**Model-Evaluation** 

Conclusion

## Model selection (Bayesian optimization)



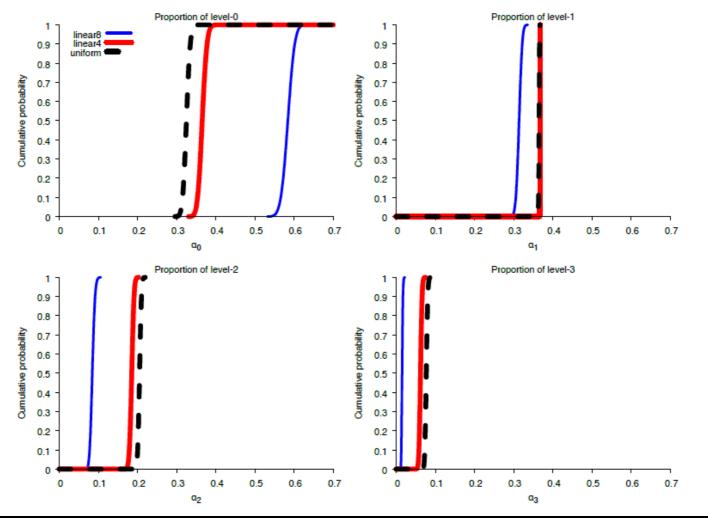
Michael Hartmann

Seminar AI in games - SS19

MotivationLevel-0 ModelsModel-EvaluationConclusionModel selection<br/>(Bayesian optimization)ConclusionConclusion

## linear4 smac2 linear7 linear8

## **Parameter Analysis**

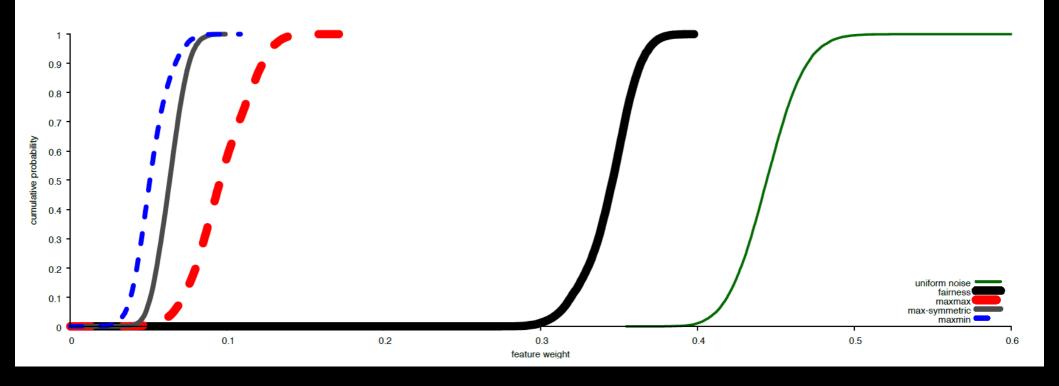


Marginal cumulative posterior distributions of levels of reasoning

Seminar AI in games - SS19

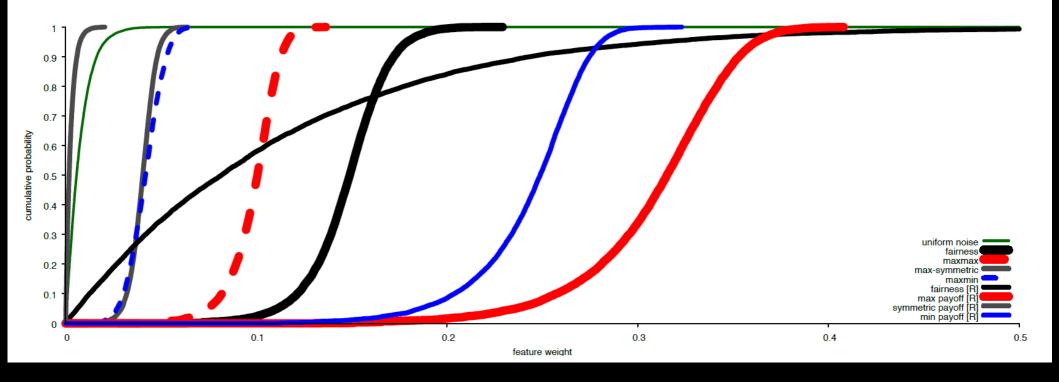
## **Parameter Analysis**

#### **Features in Linear 4**

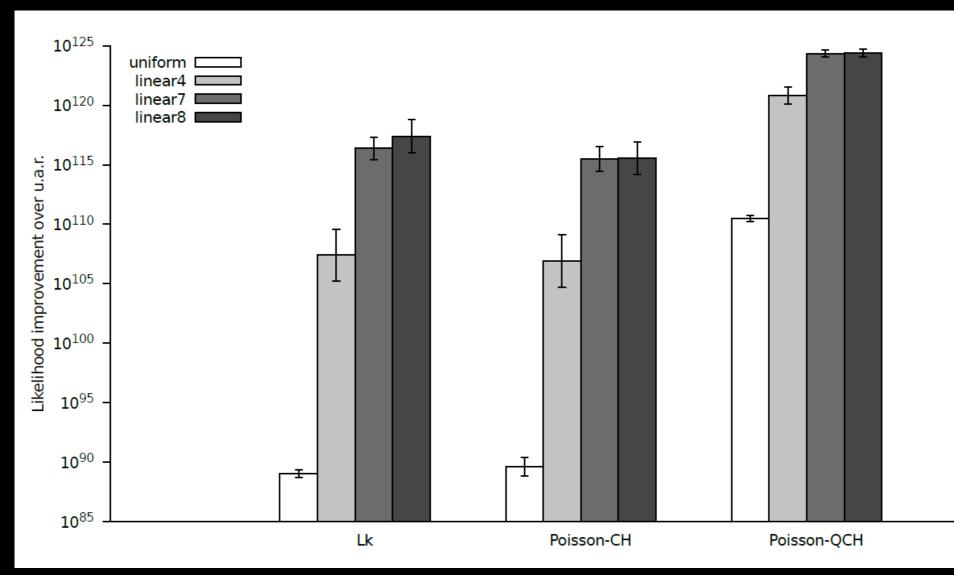


## **Parameter Analysis**

#### **Features in Linear 8**



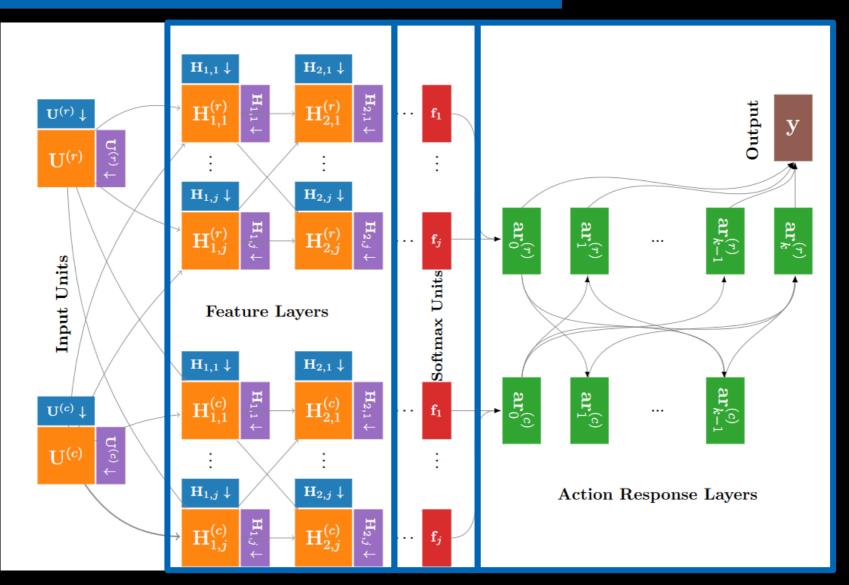
## Conclusion



Michael Hartmann

- 1. Increased performance for iterative models.
- 2. Dependant only on the payoff of the game.
  - $\rightarrow$  Generally applicable to any domain
- 3. The belief that Level-0 agents only exist in the minds of higher level agents should be questioned.
- 4. Non-strategic behaviour is an important aspect of human behaviour.

## **Proposed Architecture**



Michael Hartmann

Seminar AI in games - SS19

### Sources

- [1] James R. Wright and Kevin Leyton-Brown (2019): "Level-0 Models for Predicting Human Behavior in Games"
- [2] J. Hartford, J. Wright, K. Leyton-Brown (2016) "Deep Learning for Predicting Human Strategic Behavior."
- [3] K. Leyton-Brown, J. Wright (2014), Level-0 Meta-Models for Predicting Human Behavior in Games (Slides) (cs.ubc.ca/~kevinlb/talk.php?u=2014-Level0.pdf)
- [4] nytimes.com/interactive/2015/08/13/upshot/are-you-smarter-than-other-newyork-times-readers.html
- [5] kristiannanagorcka.com/wpcontent/uploads/2014/07/Depositphotos\_12705383\_s.jpg
- [6] utmb.edu/images/librariesprovider84/default-album/strategic-planning.jpg? sfvrsn=ea098358\_2

[7]driving-tests.org/wp-content/uploads/2012/02/back-parking.jpg