
Bomberman Tournament

Mustafa Fuad Rifet Ibrahim

June, 2019

1

Contents

1 Introduction 3

2 Lord Voldemort 4
2.1 Summary . 4
2.2 Possible Augmentations . 5

2.2.1 Guided Q-Learning . 5

3 NOBEL 6
3.1 Summary . 6
3.2 Possible Augmentations . 7

3.2.1 Deep Q-learning from Demonstrations 7
3.2.2 Opponent Modeling . 8

4 LaranTu 10
4.1 Summary . 10
4.2 Possible Augmentations . 11

4.2.1 MCTS Modifications . 11

5 Conclusion 13

6 References 13

2

1 Introduction

This report is about the Bomberman Tournament that represented the final
project to the Fundamentals of Machine Learning lecture of the winter semester
2018/19 of the University of Heidelberg. The task was to design an A.I. that
could play a simplified version of the classic game Bomberman. The agents
of the students were pitted against each other to determine the best agent.
Among those agents three were picked for further analysis to demonstrate the
variability of the approaches. The point of this report is to: (1) give a short
summary of the three approaches that were picked, and (2) explore the range
of possible augmentations to those approaches. However, this report is not
meant to reflect the current state of possible augmentations and extensions to
the described approaches but rather to give a small glimpse into the range of
options.

3

2 Lord Voldemort

2.1 Summary

The agent Lord Voldemort was built with the Q-learning approach. Q-learning
is a model-free apporach to learning an optimal policy that maximizes the total
expected reward. The Q function Qπ(s, a) itself represents the exptected return
if the agent starts in state s, executes action a and only then follows the policy
π. The basis for obtaining an optimal policy is given by the following iterative
update rule:

Q(st, at)← Q(st, at) + α
[
rr+1 + γ ·max

a
Q(ss+1, a)−Q(st, at)

]
∀s : π(s) = argmax

a
Q(s, a)

rt+1 is the reward that the agent got when it transitioned from st to st+1,
γ ∈ (0, 1] is the discount factor which determines how much of the future re-
ward estimation is taken into account and finally α ∈ (0, 1] is the learning rate
which dictates how much of the difference between the old and new Q value is
used for the update. The group decided to use the simplest implementation of
that algorithm which is Q-tables:

action1 action2 action3 . . .
state1
state2
state3
...

Table 1: Q-table

First, every entry in the table is initialized with zero and then through training
all values are updated iteratively. In each update iteration the choice of the ac-
tion can be made using a method like epsilon-greedy which balances exploration
and exploitation. After choosing an action, that specific Q value is then updated
according to the update rule stated above. The problem with this approach is
the danger of the table ending up being too large. To solve this problem the
group chose a smart construction of states[1]:

state = (Left, Up, Right, Down, Self, Self Bomb)

The Self slot can hold three values: ”Empty”, ”Bomb” and ”Danger”. The first
two are used when the tile the agent is standing on is empty or has a bomb and
the last option is used when one or more bomb radii intersect with the agent’s
tile. The Self Bomb slot can hold two values: ”True” and ”False”. These

4

are picked depending on whether or not the agent’s bomb is on the field. The
first four slots stand for the tile that is next to the agent in either movement
direction. These can can hold a value representing the game object that is
currently on that tile, e.g. ”Bomb”, ”Crate”, ”Coin” etc., or hold the values
”Empty” and ”Danger” when no object is on that tile. Among those directions
that hold the value ”Empty” or ”Danger” a special score, that depends on
the relative distance to all objects on the map, is calculated and the tile with
the highest score is assigned the value ”Priority”. The calculation of the score
depends on custom weights the group chose for the different game objects. This
state construction allowed the group to have outstanding performance with only
around 3300 states in their final Q-table.

2.2 Possible Augmentations

2.2.1 Guided Q-Learning

This is an augmentation described by the group itself[1]. The idea is based on
using human player data to speed up the training and maybe achieve a higher
end performance. The training can be divided into four phases:

• Human player phase: The human player plays a certain number of games
(preferably high number). During the human play, a Q-table is filled in the
same manner as described previously for the standard Q-table approach,
using the same state design, update rule and reward system. Essentially,
the greedy epsilon method of choosing an action in a given state is replaced
by human decision making.

• Agent phase: The agent plays a certain number of games, exactly following
the approach described in the previous section. That means at the end of
this pahse we have two Q-tables, one filled by human play and the other
filled with the agent play.

• Mixing phase: Randomly selected entries from the human Q-table are
inserted into the agent Q-table.

• Second agent phase: The agent trains the rest of the training period with
the now augmented Q-table. The epsilon value may be resetted here to
avoid overfitting to human data.

Possible variants of this augmentation are:

• Take out the first agent phase and the mixing phase and let the agent
start it’s training with the Q-table filled with human data as it’s baseline.

• Be precise in the choice of Q-table entries that are transfered over to the
agent Q-table. For example one could use the entries that have the highest
Q-value among all the actions for the given state.

5

3 NOBEL

3.1 Summary

The agent NOBEL[2] utilizes a modern implementation of the Q-Learning ap-
proach by approximating the Q-function instead of using Q-tables. The idea
is to use a neural network that, given a state, can return the Q-values for all
actions:

Figure 1: Deep Q-Learning Network[3]

The loss function used to train the network is the following:

1

2

[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]2
where r is the immediate reward received by performing action a in state s, γ is
the discount factor mentioned in the previous agent description and s′ and a′ are
the next state and the actions for that next state. The Q-values for the state s
come from the first pass through the network and the Q-values for the resulting
state s′ come from the second pass. The main advantage, besides the amount of
memory saved, is the fact that the neural network takes on the job of coming up
with a good feature selection. Furthermore it also generalizes to unseen states.
There are however a few problems with this approach that were addressed by
the group, namely the instability of the approximation because of correlations
between subsequent observations and correlations between the current Q values
and the target values. The first problem was addressed by using the so called
Prioritized Experience Replay. In this approach, minibatches of transitions
that occured over the course of the training are picked based on a probability
that depends on the temporal difference error calculated during update. This
not only counteracts the problem of the correlation of subsequent observations
but also speeds up training as more valuable experiences are preferred. The
second problem was solved by using fixed Q-targets. In this approach two
neural networks are used. The neural network that is used for target calculation
has fixed weights for a certain number of steps while the other gets updated
frequently.

6

In addition to this the group decided to implement another augmentation to the
DQN approach that alters the neural network architecture itself, which results
in the Dueling DQN architecture:

Figure 2: Dueling Deep Q-Learning Network[4]

After the convolution layers the network is split up into two streams. One
stream outputs a single scalar value that approximates the value of the state
that was fed in as input and the other stream outputs an advantage value for
all actions. These outputs can be combined in different ways. The group chose
to use the following formula as it provides good stability to the optimization:

Q(s, a) = V (s) +

[
A(s, a)− 1

|A|
∑
a′

A(s, a′)

]

This enables the network to approximate the value of the state and the ad-
vantage value of the actions independently of each other which leads to more
efficient training and a higher end performance[4].

3.2 Possible Augmentations

3.2.1 Deep Q-learning from Demonstrations

Deep Q-learning from demonstrations[5] tackles the general problem of DQN
algorithms to achieve a good policy only after millions of steps with poor per-
formance. This is particularly problematic when applied to real world problems
where agents have to interact with the real environment. Many such problems
don’t come with a simulator that represents a very good approximation of re-
ality and so the agent has to start learning in the environment with an already
high performance. In the specific case of the Bomberman A.I. this particular
augmentation would have enabled the group to dramatically reduce the training
time. In this DQN approach, the training is split into two parts, a pre-training
phase where the agent learns from demonstration data and a normal training
phase where the agent starts interacting with the environment, generating new

7

experiences and learning from a mix of those and demonstration data. Four
losses are applied during the pre-training phase: 1-step double Q-learning loss,
n-step double Q-learning loss, supervised large margin classification loss and L2
regularization loss. The Q-learning losses are used to ensure that the network
satisfies the Bellman equation and is ready to be used in standard TD learning
once the pre-training phase is over. The supervised loss is used to push the
policy towards imitation of the demonstrator:

JE(Q) = maxa∈A[Q(s, a) + l(aE , a)]−Q(s, aE)

where ae is the action the expert demonstrator took in state s and l(aE , a) is
a margin function that is 0 when a = aE and positive otherwise. As can be
seen from the equation, this loss leads to values of state-actions that have never
been taken to be at least a margin lower than the value of the demonstrator’s
action. This is important because the demonstration data obviously covers only
a small portion of the state space which would leave many state-actions to have
no data to ground them to realistic values and using only Q learning losses
would then lead to updates towards those unrealistic values. The reason for the
L2-regularization is the prevention of over-fitting on the small demonstration
dataset. All those losses are combined to form a weighted sum that represents
the overall loss:

J(Q) = JDQ(Q) + λ1Jn(Q) + λ2JE(Q) + λ3JL2(Q)

where JDQ is the 1-step Q-learning loss, Jn is the n-step Q-learning loss and JL2
is the L2-regularization loss. Those losses are applied to all demonstration data
in both phases but for self-generated data the supervised loss is not applied.
One important thing to note is that once the agent starts to interact with the
environment and generates transitions, these transitions are stored in the same
replay buffer as the demonstration data and once that buffer is full the oldest
self-generated transition is over-written. Demonstration data stays in the buffer
permanently. Furhtermore when using prioritized experience replay, small con-
stants εa and εd are added to the priorities of self generated and demonstration
data to allow for control over the relative sampling of those two types of data,
specifically the probability of demonstration data is increased.

3.2.2 Opponent Modeling

Opponent modeling[6] is a useful augmentation to DQN in scenarios in which
the agent has to play against or together with other agents that do not behave
strictly in a deterministic way. This means the other agents can not be simply
viewed as part of the environment and their policies have to be considered
explicitly. In this way potentially bad strategies of opponents can be exploited
if that bad behavior is predicted. This augmentatation is thus particularly useful

8

for Bomberman and therefore represents another possible option to extend the
DQN approach. The optimal Q function

Q∗(s, a) =
∑
s′

τ(s, a, s′)
[
r + γmax

a′
Q∗(s′, a′)

]
, where τ(s, a, s′) is the transition probability i.e. obtaining state s′ when exe-
cuting action a in state s, now has to be defined relative to the joint policy of
the other agents:

Q∗|π
o

= max
π

Qπ|π
o

(s, a)

, where o stands for the joint action of all other agents. In their paper, He He
et al propose a network structure called Deep Reinforcement Opponent Net-
work (DRON) that models Q.|π

o

and πo jointly. It consists of a standard Q
network that does action-state evaluation and an opponent network that learns
a representation of πo. There are two options for combining those two net-
works: DRON-concat and DRON-MOE. The first option simply concatenates
the output of two networks that take features of the state and features of the
opponent. This concatenation then predicts the Q value. The second option
uses a Mixture-of-Experts network to explicitly model the opponent action. Ev-
ery expert network predicts a reward for the current state and combining the
predictions from all those expert networks gives the final expected Q value.

9

4 LaranTu

4.1 Summary

The third agent in this report was built with an entirely different approach.
Instead of using Q-Learning this group decided to use a Monte-Carlo Tree Search
based approach[7] very similar to AlphaZero. Their approach can be divided
into two main parts:

• Rule based/heuristics

• Monte Carlo Tree Search guided by a neural network

They used the first part, the heuristics based approach, to govern the behavior of
the agent whenever it wasn’t close to any other agent. For this, they represented
the distances to nearby agents using weighted graphs and utilized available fast
algorithms to calculate the shortest path to an agent. Obviously this part of
the algorithm dominates the early game as all agents are far away from each
other. The second part takes over whenever the agent gets into a certain range
to other agents. In this case a mini-game is created that only includes the agents
close by and no coins. That means the game is transformed to a simpler perfect
information game version with the only objective being to kill the opponents.
This mini-game represents the game on which the Monte-Carlo Tree Search is
applied. The group utilized self play during training and so the tree structure
for a given mini-game would have the form:

Figure 3: Tree Structure For LaranTu

This is the second simplification of the game. Through using this particular tree
structure the group viewed the game as a turn based game. The tree search itself
was guided with a neural network instead of the classic approach of playouts and
the standard selection formula. The network predicts a probability of success
for the actions (policy part) and a value for the current state (value part). Both
outputs are used to guide the tree search in the selection phase of MCTS. The
basic iteration during training would look like this:

10

• Create mini-game for all groups of agents

• Execute Monte Carlo Tree Search for a certain number of repetitions

• For the part of the tree that corresponds to the highest visit count move,
repeat Monte Carlo again. This effectively means that the mini-game is
played out before any move in the main game is made. This however goes
on only for a limited amount of mini-game steps.

• At the end of the mini-game use the move with the highest visit count as
the ground truth for the policy part of the network and the end result of
the mini-game as the ground truth for the value part of the network.

• Use the action with the highest visit count as the action that should be
performed in the main game for the given agent

The choice to use mini-games not only made the task simpler but also enabled
the group to update their network in every step of the main game. This means
that an increasingly better version of the network was used to guide the following
MCTS. Another advantage is the fact that the tree search returns an improved
recommendation of the next move at each iteration. This however also led to
this agent being very slow compared to other agents and so it always received
a penalty.

4.2 Possible Augmentations

4.2.1 MCTS Modifications

One possibility for improving the group’s approach is to specifically tackle the
MCTS algorithm itself and try to apply various extensions and modifications
that have been developed over the years. One option is to use domain specific
knowledge. This can be incorporated into the MCTS through for example these
two different ways:

• node selection

• pruning

Node selection can be altered through assignment of nonzero priors to the value
estimation or the score when creating each child node, effectively influencing
the frequency with which the children will be selected[8]. Another method that
influences the node selection is more dynamic in nature as the influence of the
domain specific nature decreases over the number of times the given node was
visited[9]. This is done through adding an extra term:

bi
ni

, where bi is a heuristic score of the i-th child node and ni is the number of
times the child node i has been visited so far. The idea behind this is to give

11

starting help with domain specific knowledge but then as the move selection
through the tree search gets an increasingly better approximation of the best
move, enough iterations of the tree search will have been executed and so the
selection based on the score without the domain term can be trusted more. The
second way of bringing in domain specific knowledge mentioned above relates
to the process of ignoring or deleting certain parts of the whole tree as they are
deemed irrelevant. In this case the process of pruning a part of the tree is based
on domain specific knowledge. For example in the specific case of Bomberman
certain situations could be branded as hopeless and therefore no time should be
wasted exploring all the different ways of playing out these hopeless situations.
Other modifications to the MCTS algorithm that may be considered involve
the way the ”best” child node is defined when actaully selecting a move to be
played in the main Bomberman game after finishing the last MCTS iteration.
The group chose the child node with the highest visit count but there are other
possibilities:

• the child with the highest value

• the child with both the highest visit count as well as highest value. If there
is no such child node at the moment then more iterations of the MCTS
are executed until such a situation occurs.

• the child that satisfies some kind of lower confidence bound

It might be worthwile to test for signifcant differences in performance when
choosing these different approaches to final move selection.

12

5 Conclusion

As mentioned at the beginning of the report, this report clearly does not ex-
haust all the possibilities to augment the approaches used by the student groups.
Nonetheless, through this little exploration it hopefully became clear that the
amount of options is vast and that Bomberman is a fitting game for trying out
many different approaches.

6 References

[1] Dan Halperin and Ella Stahl: Report - Lord Voldemort

[2] Tatjana Chernenko, Jan-Gabriel Mylius and Valenti Wüst: Report - NOBEL

[3] https://neuro.cs.ut.ee/wp-content/uploads/2015/12/dqn.png

[4] Wang et al: Dueling Network Architectures for Deep Reinforcement Learning. 2016

[5] Heste et al: Deep Q-learning from Demonstrations. 2017

[6] He et al: Opponent Modeling in Deep Reinforcement Learning. 2016

[7] Anna Sommani and Peter Sorrenson: Report - LaranTu

[8] Gelly and Silver: Combining Online and Offline Knowledge in UCT. 2007

[9] Chaslot et al: Progressive Strategies for Monte-Carlo Tree Search, 2008

13

