Why Should I Trust You?

Speaker:Philip-W. GrassalDate:05/03/18

Why should I trust you?

(a) Husky classified as wolf

(b) Explanation

Based on ...

- Title: Why Should I Trust You? Explaining the Predictions of Any Classifier
- Authors: Ribeiro, Singh, Guestrin
- Published in: ACM KDD '16 Proceedings

Agenda

- I. Contributions
- II. Concepts and Theory
- III. Evaluation
- IV. Summary of Results

I. Contributions

- Goals
 - Models and predictions will be used only if users can **trust** them
 - Desired: An interpretable way to explain the faithfulness of a prediction or a model
- Contributions
 - LIME, an algorithm explaining any individual predictions
 - SP-LIME, an algorithm explaining any model
 - Evaluation of LIME and SP-LIME with simulated and human subjects

I. Contributions

Basic idea of using LIME

I. Contributions | II. Concepts and Theory | III. Evaluation | IV. Summary of Results

- Local Interpretable Model-Agnostic Explanations
- Explains if we can trust a single prediction by computing an interpretable model
- Definitions:

original features: $x \in \mathbb{R}^d$ original model: $f \colon \mathbb{R}^d \to \mathbb{R}$ interpretable features: $x' \in \{0,1\}^{d'}$ interpretable model: $g: \{0,1\}^{d'} \rightarrow \mathbb{R}$

• Original features: $x \in \mathbb{R}^d$

Interpretable features: $x' \in \{0,1\}^{d'}$

From multiple color channels per pixel to contiguous pixel patches

I. Contributions | II. Concepts and Theory | III. Evaluation | IV. Summary of Results

- Interpretable model: $g: \{0,1\}^{d'} \rightarrow \mathbb{R}$
- $g \in G$ where G describes a family of interpretable models, i. e. they can easily be transferred into visual or textual artefacts, such as
 - Decision trees
 - Simple linear models
- Model complexity is measured with $\Omega(g)$

- Goal of LIME: find an interpretable model \hat{g}_x that locally approximates the original model f w. r. t. instance x
- Locality is defined by proximity/distance measure π_x around x
- Let $\boldsymbol{\mathcal{L}}$ define the approximation loss, we compute

I. Contributions | II. Concepts and Theory | III. Evaluation | IV. Summary of Results

II. LIME for Sparse Linear Models

• G is family of K-sparse linear models,

i. e. $g(x') = w_g x'$ and $||w_g||_0 \le K$

- To measure if g is a good local approximation, multiple instances z', z are sampled around x', x
- *L* becomes a weighted least squares objective

$$\mathcal{L}(f, g, \pi_{\chi}) = \sum_{z, z'} \pi_{\chi}(z) (f(z) - g(z'))^{2}$$
$$\Omega(g) = \infty * \mathbb{I}[||w_{g}||_{0} > K]$$

Local linear approx. of complex model

II. LIME for Sparse Linear Models

- $\mathcal{L}(f,g,\pi_{\chi}) = \sum_{z,z'} \pi_{\chi}(z) (f(z) g(z'))^2$
- $\Omega(g) = \infty * \mathbb{I}[||w_g||_0 > K]$
- Solve: $\hat{g}_x = \operatorname*{argmin}_{g \in G} \mathcal{L}(f, g, \pi_x) + \Omega(g)$
- 1. Use Lasso regularization to set $\Omega(g) = 0$
- 2. Use standard solver for WLS-objective

Local linear approx. of complex model

II. LIME for Sparse Linear Models

Explaining Google's Inception neural network

II. SP-LIME

- LIME: fidelity is only evaluated locally
- Submodular Pick LIME: estimate global fidelity by local explainers
- Idea: Let X denote a test set, a model g_x is computed via LIME for all $x \in X$. Based on the weights w_{g_x} select the B most representative local models. Can we trust them?
- \rightarrow Yes? Then we can trust the model, too

II. SP-LIME

• How to select B = 2 most representative models? VERY SIMPLIFIED!

III. Evaluation – Simulated User Experiments

- Train classifiers with books and DVDs dataset for sentiment prediction
- Compare LIME with **10-sparse linear models** to other black box methods from literature

III. Evaluation – Simulated User Experiments

- Are interpretable predictors faithful to the model?
- Experiment: let interpretable models identify relevant features

III. Evaluation – Simulated User Experiments

- Can a prediction be trusted?
- Experiment: let explainers identify untrustworthy features

	Books			
	LR	NN	RF	SVM
Random Parzen Greedy LIME	14.6 84.0 53.7 96.6	14.8 87.6 47.4 94.5	14.7 94.3 45.0 96.2	14.7 92.3 53.3 96.7

- Can the model be trusted?
- Experiment: let explainers find the best model

III. Evaluation – Human Subjects

- Does SP-LIME help people to decide whether a model is trustworthy?
- Survey based on confession classifiers trained on religious texts data set

III. Evaluation – Human Subjects

- Does LIME enable non-experts to improve a classifier?
- For multiple rounds of explanation, participants removed features by using LIME to improve a given classifier

IV. Summary of Results

- LIME, SP-LIME provide interpretable approximations of complex models
- Outperform other recent approaches
- Complement summary statistics (test accuracy) to evaluate the trustworthiness of a model

Contact Information: Philip-W. Grassal grassal@stud.uni-heidelberg.de