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Abstract

This report is about the research of James R. Wright and Kevin Leyton-Brown concerning
improved Level-0 models to accurately predict how humans will behave in games. The main
focus of this report lies on the findings presented in the paper ”Level-0 Models for Predicting
Human Behavior in Games” which was published in 2019.
The basic concepts of these new models as well as their performance and the game theoretic
models they seek to improve will be presented in this report.
All the research was done on a dataset called the ALL10 Dataset which included various
unrepeated simultaneous move normal form games played by humans.
All the numbers and figures in the following report are derived from training and testing on
this dataset by the original authors.

2



Contents

1 Introduction 4
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Level-K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Quantal Cognitive Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Improved Level-0 Models 7
2.1 Non-strategic Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Level-0 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Selecting a Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Conclusion 13

References 15

3



1 Introduction

1.1 Motivation

In most strategic situations that can be described as a normal-form game it is quite simple
to find the best possible solution or a Nash equilibrium. But the idea behind behavioural
game theory is not to describe optimal behaviour but rather the way actual people reason
and decide when faced with a strategic decision.
Modelling this human decision making process is the goal of iterative models such as Level-
K and Quantal Cognitive Hierarchy. Both models require a specification of non-strategic
behaviour (Level-0) as a starting point for the iterative reasoning.
It is a common practice to define the behaviour of these Level-0 agents simply as uniform
randomization over actions. The reasoning behind this is that it is generally believed that
these non-strategic agents are merely a starting point for the reasoning of higher level agents
and not part of the predictive model itself.
The research of Kevin Leyton-Brown and James R. Wright shows that this belief should
be questioned and that defining a more accurate model of the non-strategic behaviour of
humans can actually significantly improve the predictions made by these models.

1.2 Level-K

The Level-K framework defines a hierarchy of levels of reasoning. The bottom level, Level-0,
is the non-strategic behaviour level. The definition of non-strategic behaviour is in principle
up to the modeler as long as it does not include responding to explicit beliefs about other
agents behaviour. The most commonly used behaviour for Level-0 is uniform randomization
over actions.
A Level-1 Agent will assume that every other agent is a Level-0 Agent and will play the best
response to the expected behaviour. The same goes for Level-2 agents they will assume that
the whole population consists solely of Level-1 agents.
In theory there is no upper boundary for this hierarchy but it is generally advised to limit
it to a reasonable amount of levels for the given scenario.
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1.3 Quantal Cognitive Hierarchy

One of the main problems of Level-K is the rigid level structure where every agent of level i
expects a homogeneous population of level i-1 agents.
Since a player does not necessarily fall under one of these archetypes Cognitive hierarchy
extends the Level-K framework by enabling agents to reason about mixed populations.
A Level-3 agent might now base his decision for example on a population consisting of 30%
Level-0 agents 50% Level-1 and 20% Level-2. This makes the model more flexible and in
most cases more predictive than a standard Level-K hierarchy.

Quantal Cognitive Hierarchy is a special form of Cognitive Hierarchy consisting of two key
components, Quantal Best Response and Iterative Reasoning.

Quantal Best Response
A very important aspect of human play is that it is in general imperfect. Small mistakes,
like choosing the second best action rather than the best, occur comparably often, while big
mistakes, like playing an action that always looses, are quite unlikely to be played.
Quantal Best Response tries to model this behaviour by making the agents respond stochasti-
cally to their incentives. This means that a higher utility action results in a higher probability
to be chosen. By this logic a mistake becomes less likely the costlier it is.

QBRi(s−i, G, λ) = si(ai) =
exp[λ ∗ ui(ai, s−i)]∑

a′i∈Ai
exp[λ ∗ ui(a′i, s−i)]

(1.1)

The Quantal Best Response will always return a single mixed strategy si.
ui(ai, s−i) is in this case the expected utility of agent i when playing action ai against a mixed
strategy s−i in the game G. The variable λ, the precision represents the agents sensitivity
to utility differences.
This is an important part of human decision making since people rarely compute exact util-
ities when playing a game. If two actions seem to be roughly equal concerning their utility
they will usually be treated as such.

Iterative Reasoning
The Quantal Cognitive Hierarchy model requires higher-level agents to reason about the
behaviour of lower-level agents and respond to them.
It is therefore very important to know the distribution of the different levels in the agent
population to form an accurate response to their mixed behaviours.
For this paper a single-parameter Poisson distribution is chosen to describe the distribution
of agent levels in the population.
This means we can predict the truncated distribution over actions for an agent i with level
0 ≤ l ≤ m with
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πi,0:m =
m∑
l=0

Poisson(l; τ)∑m
l′=0 Poisson(l′; τ)

πi,l (1.2)

τ is here the mean of the Poisson distribution.
With π−i,0:m being the truncated distribution over actions for agents other than i we can
now write the predictions for agents of level m and of level 0 as

πi,m = QBRi(π−i,0:m−1;λ) (1.3)

πi,0 = |Ai|−1 (1.4)

The predicted level-0 behaviour (1.4) is in this case just a uniform distribution over actions
since this section just aims to outline the baseline model. Creating a more elaborate non-
strategic behaviour is the topic of the next chapter.
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2 Improved Level-0 Models

2.1 Non-strategic Behaviour

It is a common practice to equate non-strategic behaviour with uniform randomization when
defining level-0 behaviour. This of course not very plausible when trying to model human
behaviour. Level-0 agents do not reason over nor respond to the other agents strategies, but
this definition does in no way imply that these agents should be strictly limited to random
uniform action profiles.
Level-0 agents may still take account of payoffs of varying degrees. Maximising the own
possible payoff or minimizing the possible loss does not require higher level reasoning and
can therefore be considered non-strategic behaviour.
As a formal way to summarize this we will describe any behaviour as non-strategic that can
be computed via a finite combination of elementary agent models.

We define these elementary agent models as follows:
An agent model for agent i is defined by a function fi(G) where G is the normal-form Game.
This function maps to a vector of reals with the same dimension as the number of available
actions.
If an agent model can be computed as fi(G) = hi(Φ(G)) where Φ(G)a = ϕ(u(a)), with h
being an arbitrary function, is elementary.
ϕ(u(a)) is in this case a linear combination of the players utilities with action profile a with
weights defined by a vector w ∈ Rn. ϕ(u(a)) = wT (u(a)).
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2.2 Level-0 Features

Now that we defined what non-strategic behaviour is more precisely we can define certain
rules (features) that recommend actions to a certain degree.
These features can all be represented as elementary agent models and can therefore be di-
rectly computed from the normal-form game.
The features mentioned are all directly taken from the paper by James R. Wright and Kevin
Leyton-Brown and do not cover all possible non-strategic features.
All the features have a real-valued and a binary representation.

Maxmin payoff - The best worst case
This feature recommends the safest decision, where the highest worst case payoff is achieved.

fmaxmin(ai) =

{
1 ai ∈ argmaxa′i∈Ai

mina−i
ui(a

′
i, a−i),

0 otherwise
(2.1)

The real valued version of this feature returns the worst-case payoff for an action:

fmin[R](ai) = min
a−i∈A−i

ui(ai, a−1) (2.2)

Maxmax payoff - The best best case
This feature recommends the action with the highest possible payoff

fmaxmax(ai) =

{
1 ai ∈ argmaxa′i∈Ai

maxa−i
ui(a

′
i, a−i),

0 otherwise
(2.3)

The real valued version of this feature returns the best-case payoff for an action:

fmax[R](ai) = max
a−i∈A−i

ui(ai, a−1) (2.4)

Minimax regret - The minimal maximum regret
This feature recommends the action where the utility the agent could have gained by playing
the best response to the other agents’ actions is minimal.

If r(ai, a−i) = maxa∗i∈Ai
ui(a

∗
i , a−i)− ui(ai, a−i)

is the regret of agent i in action profile (ai, a−i), then

fmmr(ai) =

{
1 ai ∈ argmina′i∈Ai

maxa−i
ui(a

′
i, a−i),

0 otherwise
(2.5)

8



The real valued version of this feature returns the worst-case regret for playing an action:

fmmr[R](ai) = inv[ max
a−i∈A−i

ri(ai, a−1)] (2.6)

Maxmax fairness - The ”fairest” action
The difference between the maximum and minimum payoffs among the agents is used as a
measurement for the unfairness in this feature.
d(a) = maxi,j∈N ui(a)− uj(a)

f fair(ai) =

{
1 ai ∈ argmina′i∈Ai

mina−i
d(a′i, a−i),

0 otherwise
(2.7)

The real valued version of this feature returns the maximum fairness that could result from
playing a given action:

f fair[R](ai) = inv[min a−i ∈ A−id(ai, a−1)] (2.8)

Max symmetric - The best response to oneself
This feature recommends the best response to the agents own action.

The symmetry is defined by the proposition
Symm(u) ⇐⇒ ∀i, j ∈ N, |Ai| = |Aj| ∧ ∀ai, aj ∈ Ai, ui(ai, aj) = uj(aj ,ai)

fmaxsymm(ai) =

{
1 Symm(u) ∧ ai ∈ argmaxa′i∈Ai

ui(a
′
i, ..., a

′
i),

0 otherwise
(2.9)

For non-symmetric games it will evaluate to zero for all actions.
The real valued version of this feature returns the symmetric payoff of an action for symmetric
games:

f symm[R](ai) =

{
0 ¬Symm(u)

ui(ai, ..., ai) otherwise
(2.10)

Maxmax welfare - The best sum of utilities
This feature recommends the action where the sum of utilities for all agents is maximal

fwelfare(ai) =

{
1 ai ∈ argmaxa′i∈Ai

maxa−i∈A−i

∑
j ∈ Nuj(a′i, a−i),

0 otherwise
(2.11)

The real-valued version of this feature returns the maximum welfare that could result from
playing a given action:

fwelfare[R](ai) = max
a−i∈A−i

∑
j∈N

uj(ai, a−i) (2.12)
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Before we combine these features in order to get a decision, we have to evaluate their
Informativeness in the given strategic situation that we want to evaluate.
With a special transformation we can zero out features that do not help the decision making
process, due to recommending all actions to the same degree.

I(f)(ai) =

{
f(ai) ∃ a′i, a′′i ∈ Ai : f(a′i) 6= f)(a′′i )

0 otherwise
(2.13)

This transformation helps producing much less noisy recommendations by ignoring uninfor-
mative features.
After this we normalize all the feature values to get non-negative values that sum to one,
since otherwise high real valued feature values could potentially overwhelm other features.

To get a decision we now need to combine all these transformed feature values to produce a
distribution of actions.
For this task we will use a weighted linear level-0 specification with F being a set of features
and wf ∈ [0, 1] as a weight parameter.

πlinear,Fi,0 (ai) =
w0 +

∑
f∈F wff(ai)∑

a′i∈Ai
[w0 +

∑
f∈F wff(a′i)]

(2.14)
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2.3 Selecting a Model

An exhaustive evaluation of all subsets of binary features showed that certain feature com-
binations seem to vastly outperform others. Our goal in constructing a predictive model is
to use as few features as possible while improving the performance of the model.

Figure 2.1: The figure shows the differences in performance of the various combi-
nations of binary features

The best performing linear model, as seen in the figure combines the features maxmax
payoff, maxmin payoff, maxmax fairness, and max symmetric. This model was
called linear4 due to being a linear combination of four features.

If we now extend the linear4 specification with the real valued versions of the four bi-
nary features used, we get a specification called linear8. This model seems to, in most
cases, outperform linear4.

A parameter analysis shows that this 8 feature model can safely be reduced to 7 features
by eliminating the real valued fairness feature. This feature seemed to be not well identified
and therefore not an important feature. The reduced specification is called linear7.
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Figure 2.2: Marginal cumulative posterior distributions over weight parameters of
the linear8 specification showing the poorly identified fairness[R]

Omitting the real valued fairness feature does by no means imply that fairness itself is not
an important feature in human play. It merely shows that a real valued representation of it
does not yield any improvement for the model. The binary version of the fairness feature on
the other hand has a high weight and therefore is considered rather predictive.
As a comparison, the weights of the linear4:

Figure 2.3: Marginal cumulative posterior distributions over weight parameters of
the linear specification

Here the binary fairness feature is the highest weighted feature of all. The reason for that,
as presumed by the researchers, is that fairness is highly predictive when it is present (not
uninformative), but it is present in fewer games than most of the other features.
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3 Conclusion

The results of James R. Wright and Kevin Leyton-Brown’s research shows clearly the faulti-
ness of the long-standing assumption that non-strategic agents exclusively exist in the minds
of higher level agents.

Figure 3.1: Marginal cumulative posterior distributions of levels of reasoning for
Poisson-QCH with linear8, linear4 and uniform specifications.

The figure shows clearly that with a linear8 specification the proposed amount of level-
0 agents exceeds 50% of the agent population. This proves that non-strategic behaviour
is an important aspect of the human decision making process, and that including sensible
non-strategic behaviour in this kind of models greatly improves the performance in terms of
predictiveness.
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Figure 3.2: Performance improvement with linear4, linear7 and linear8, compared
to random uniform level-0 behaviour on level-K, Cognitive Hierarchy
and Quantal Cognitive Hierarchy models

The fact that this extended level-0 behaviour is solely derived from the normal form game
itself makes it applicable to practically any domain of strategic decision making that can be
represented in this form.

It is important to note that the dataset these models were trained on ,with 142 games
and 13863 observations on human play, is comparatively small for a machine learning con-
text in this field. The shown performance might very well differ from the results shown above
for some applications.

Until now these models have only been trained and tested on two-player games. While
the authors of the paper make the assumption that the models would probably show the
same performance in multiplayer games since only the level-0 behaviour is changed it has
not yet been proven and was left for future research.

14



References

1. Level-0 Models for Predicting Human Behavior in Games. J. Wright, K. Leyton-Brown.
Journal of Artificial Intelligence Research (JAIR), volume 64, pp. 357383, February
2019.
https://www.jair.org/index.php/jair/article/view/11361

2. Level-0 Meta-Models for Predicting Human Behavior in Games. J. Wright, K. Leyton-
Brown. ACM Conference on Economics and Computation (ACM-EC), 2014.
http://www.cs.ubc.ca/~kevinlb/talk.php?u=2014-Level0.pdf

15

https://www.jair.org/index.php/jair/article/view/11361
http://www.cs.ubc.ca/~kevinlb/talk.php?u=2014-Level0.pdf


Formalities

Michael Hartmann

• 3329547

• Angewandte Informatik (Bachelor)

• Seminar - Artificial Intelligence for Games

16


	Introduction
	Motivation 
	Level-K 
	Quantal Cognitive Hierarchy 

	Improved Level-0 Models
	Non-strategic Behaviour 
	Level-0 Features 
	Selecting a Model 

	Conclusion
	References

