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Abstract
Since started in the 1950s, reinforcement learning made a huge leap forward in the last

few years in terms of success and popularity. Nowadays agents trained via
reinforcement learning are able to keep up and even surpass humans in real-time in

games as complex go and starcraft, which was said to be to complex for AI to do. This
report aims at giving a brief introduction into the topic of reinforcement learning and

at providing the basic tools to deal with most of the typical reinforcement learning
problems while explaining the general ideas behind them.
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1 Introduction
Normally the standard practice in machine learning is training your algorithm supervised
on a huge dataset with some input information and the according solutions to solve a
problem with i.i.d. problem-data. But let’s assume that the problem is now to teach a
machine to play chess. First of all, the data is not any longer i.i.d., since e.g. if you move
your pawn to a particular field, this field is not longer available to your other pieces.
Furthermore there seems to be no unique right move, but a set of reasonable moves
to decide from, the outcome of which is not always immediately clear, but might be
delayed e.g. in case of sacrifices. This is where reinforcement learning comes in handy,
since it works especially well in feedback-delayed, non i.i.d. environments where the
agents behaviour directly affects the subsequent data.

1.1 Basics
The main changes with the reinforcement learning approach are that the agent has no
needs for a supervisor to decide on an action at from a given set of available actions
At which may change regarding the agent’s state st for every time step t. In general
there are two kinds of states. The environmental state is a complete description of the
environment and contains all possible information about everything within the problem,
but may be not or only partially visible to the agent. The other state is the agent state,
which is the agent’s personal representation of the environment. If the environmental
state is equal to the agent state, the environment is called observable. In the following
we will look only on such observable environments. In addition a state is called Markov
state if the probability to get to the next state is only dependent on the current state
the agent is in. In other words, all predictions about the future are only dependent on
the presence and not the past.

To decide which action from the actionset may be the best, the agent needs to process
reward signals Rt, which are scalar feedback signals obtained from the environment
after each action. The agents goal is to maximize his overall reward. Therefore it must
approximate all rewards it is going to get, which is equal to maximizing the return Gt

Gt = Rt + γRt+1 · · · =
∞∑
k=1

γkRt+k (1)

in which γ ∈ [0, 1] is the discount factor. Such a discount factor is necessary to prevent
infinite returns in the case of cyclic rewards and to model uncertainty into the decision,
since the further the agent tries to predict the future, the bigger the uncertainty and the
less weight the expected reward for that future action has.

To maximize the overall return the agent follows and improves a certain policy π
which defines the agent’s behaviour by mapping from the set of states S to the set of
actions A
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π : S −→ A, s ∈ S, a ∈ A (2)

π(s) = a (deterministic) (3)
π(a|s) = P[a|s] (stachastic) (4)

The policy is called deterministic if for every certain state the result is one partic-
ular action, and stochastic if the result is a probability distribution over possible actions.

To be able to evaluate and improve the policy π the agent relies on value functions

v : S −→ R, vπ(s) = Eπ[Gt|s] (5)
q : S × A −→ R, qπ(s, a) = Eπ[Gt|s, a] (6)

The state-value-function vπ which returns the expected overall return, starting in a state
s and following policy π, and the action-value-function qπ which returns the expected
return starting in a state s, performing a certain action a and from the next state fol-
lowing the policy π.

Given a policy the agent interacts with it’s environment as shown in Figure 1. First
the agent, represented by the brain, finds itself in a certain state in his environment,
represented by the earth. The agent applies his policy to the state and picks an action,
which has a direct impact on the environment. The environment then returns the agent
a reward signal and it’s new state before the circle restarts.

The tasks an agent may perform in such a manner are evaluating a given policy by
predicting the return for every given state if the policy is followed, which is called the
prediction task, and finding the best possible policy by finding the actions leading to the
maximum return for every state, which is called the control task. Obviously the agent
has to be able to solve the prediction task to be able to solve the control task.

2 Model-based Learning
2.1 Bellman Equation
Now let’s take a closer look into the inner structure of the value functions. First we can
write the definition (5) slightly different

vπ(s) = Eπ[Gt|s]
= Eπ[Rt + γGt+1|s]
= Eπ[Rt + γv(st+1)|s] (Bellman Equation) (7)
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Figure 1: Agent-Environment-Interaction [1]

This iterative relationship of the value function of the current state with the value
function of the successor state is called Bellman Equation. To solve it we can write it in
matrix notation

v = R+ γPv (8)

which can be easily rewritten into

(I− γP)v = R
v = (I− γP)−1R (9)

This can be done analogously for the state-value-function q.
While finding the value of an arbitrary value function can be done by just solving

the Bellman equation there are still two major problems. The first problem is, that this
works only for small matrices, since the operation is O(|S|). The second problem is that
in general, we are not just interested in arbitrary value functions, but in the optimal
value functions which are defined as the maximum value functions with respect to the
policy.

v∗(s) = max
π

vπ(s) (10)

q∗(s, a) = max
π

qπ(s, a) (11)

Through the definitions of optimal value functions we can now define an ordering of
policies as follows

π ≥ π′ ⇐⇒ vπ(s) ≥ vπ′(s), ∀s

which already implies the definition of an optimal policy π∗

π∗ ≥ π, ∀π (12)
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Consequently from (10),(11),(12) we get that the value functions of the optimal policy
are always optimal.
With these new insights we can now formalize the goal of reinforcement learning algo-
rithms, which is finding the optimal policy.

2.2 Policy Iteration
Through the maximum operation the Bellman Equation loses its linearity and now can
not be solved the same way as before in just one go. Nevertheless we can utilize the
matrix notation of the Bellman Equation (8) to evaluate and improve given policies
iteratively. Let’s assume we are given a certain policy π0. For the evaluation task we
just need to obtain all values of the according state-value-function vπ0 , which can be
done by using (8)

vk+1 = Rπn + γPπnvk (13)

with the iteration number k. In our case the policy index is just n = 0. The initial
values for v0 may be chosen arbitrary as e.g. v0 = 0⃗. This iterative method works
since with every iteration we are getting an additional piece of reality in terms of the
actually received rewards. This gets our values every time slightly closer to the true
state-value-function vπn . If we are only interested in solving the prediction task, we are
done as soon as we are satisfied with the outcome, which could be measured e.g. with
the euclidean distance

vπn ≃ vk ⇐⇒ |vk − vk−1| < threshold

Although if we are interested in finding the optimal policy, then the next step is to
improve our current policy πn by acting greedy w.r.t. the newly obtained state-value-
function

πn+1 = greedy(vπn) (14)

This way we get our new policy which we will have to evaluate in order to improve
our state-value-function to get another new, better policy and so on. This cyclic process
is illustrated in Figure 2 where the left image shows the algorithm starting with an
arbitrary v and a policy π, evaluating the policy until v = vπ (arrow up), then improving
the policy by acting greedy w.r.t. v (arrow down) and so on until the optimal policy and
the optimal state-value-function are reached. The right graph shows the same process,
but exhibits a stronger emphasis on the cyclic nature of the algorithm and underlines
that once the optimal state-value-function and the optimal policy are reached, they are
not changing any more.

2.3 Value Iteration
If we are not given any policy, we can utilize the following theorem
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Figure 2: Policy Iteration [2]

Principle of Optimality
A policy π(a|s) archieves the optimal value vπ(s) = v∗(s) from state s if and only if for
any state s′ reachable from s, π archieves the optimal value vπ(s

′) = v∗(s
′) from state s′.

Now we can subdivide any optimal policy into the optimal first action a∗ followed by
an optimal policy from the successor state s′. Now if we start with just arbitrary values
for v0, we make a one step look ahead by using the Bellman Optimality Equation

vk+1 = max
a∈A
Ra + γPavk (15)

which also converges to the optimal state-value-function although intermediate value
functions may not correspond to any policy.

2.4 Example
Now lets take a closer look on how such previously described interactions may be actually
calculated. Consider the following toy example in Figure 3. A delivery company gets
an order and has to deliver it to another city. They decide in pfreeway = 0.8 of all cases
to take the motorway, which leads them with the probability of pjam = 0.4 into a traffic
jam → ptraffic jam = pfreeway + pjam = 0.32. While driving the driver may reconsider his
decision, or drive through to his destination. If the motorway is free, he may try to drive
faster to finish his job earlier, while risking an accident.

The ordered set of states in this problem is S ={get Order, free road, traffic
jam, free slow road, accident, deliver order faster, deliver order, de-
liver order slowly} with the according action set A ={freeway, drive through
city, race like a madman, drive through escape jam}

Furthermore in this particular case we are provided the reward function R and the
state-transition-probability-matrix P which implicitly follows from the probabilities and
the actions. These are defined as

s, s′ ∈ S, a ∈ A
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Figure 3: Model Based Delivery Problem

Pa
s′s = P[st+1 = s′|st = s, at = a] (16)
Ra

s = E[Rt|st = s, at = a] (17)

The tuple of the reward function and the state transition probability matrix ⟨R,P⟩ is
called a model. Model based algorithms use exactly that to solve the prediction task.

In our particular example we get

R =



0
− 2
− 10
− 6
− 1000
+ 70
+ 40
+ 30


P =



0 0 0 0 0 0 0 0
, 48 0 , 56 , 18 0 0 0 0
, 32 , 09 , 24 , 12 0 0 0 0
, 2 0 , 2 0 0 0 0 0
0 , 01 0 0 0 0 0 0
0 , 09 0 0 0 0 0 0
0 , 81 0 0 0 0 0 0
0 0 0 0, 7 0 0 0 0


Now we can calculate the value functions for our states. Let’s consider for example

the state free road and a discount factor γ = 0. Let the initial values of state-value-
function to be equal to the rewards of the according state. With (5), (6) and (7) we
get
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v(free road) = −2 + 0.01 · (−1000) + 0.09 · 70 + 0.81 · 40 + 0.09 · (−10)
= 25, 8

q(free road,race like a madman) = −2 + 0.1 · (−1000) + 0.9 · 70
= −39

q(free road,drive through) = −2 + 0, 1 · −10 + 0.9 · 40
= 33

So with the policy of the driver the overall value of the state free road has after one
step of policy iteration the expected return of 27, 8. The best action under consideration
of γ = 1 would be drive through with the expected return of 35 after one step look
ahead.

3 Model free Learning
To know the state-transition-probabilities and the reward functions is not always possi-
ble, s.t. we are not always able to use the previously discussed policy and value iteration.
Under the new circumstances we need to acquire the state-transition-probabilities and
the reward functions by ourselves.

3.1 Monte Carlo Policy Evaluation
The solution to our lack of knowledge about the environment is going to be analysing
the agent’s direct experience. The goal is to approximate and modify our understand-
ing of the values of the state-value-function of a particular state with the Monte Carlo
Algorithm (MC) every time we actually visit that state. The idea behind the algorithm
is to pick a terminated sequence (episode) and update the v for all visited states in the
following way:

if the state s is visited for the first time in an episode,

• increment the counter N(s), which counts the number of visits

• increment the total return over all already observed episodes for state s: Gtot(s) =
Gtot(s) + Gt(s) (remember, since we look on an already terminated sequence we
know the true experienced Gt for every state of the sequence)

• update the approximation of the state-value-function v(s) = Gtot(s)/N(s)

What we are doing is basically updating our approximation towards the mean return,
which by the law of large numbers converges to the optimal state-value-function.
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By transforming the equation for the mean, we can compute it more elegantly

µk =
1

k

k∑
j=1

=
1

k

(
xk +

k−1∑
j=1

xj

)

=
1

k
(xk + (k − 1)µk−1)

= µk−1 +
1

k
(xk − µk−1) (18)

With this modification our update rule becomes

N(st)←− N(st) + 1

v(st)←− v(st) +
1

N(st)
(Gt − v(st))

←− v(st) + α(Gt − v(st)) (19)

with a custom learning rate α ∈ [0, 1] which can be used to replace the reciprocal visiting
counter N(st)

−1

3.2 Temporal Difference Policy Evaluation
A slightly different approach is to also analyse sequences of the agent’s experience, but
to update the values v(s) towards the experienced reward Rt and the approximated,
discounted return of the successor state γv(st+1). This is the idea behind the Temporal
Difference Algorithm which has the update rule

v(st)←− v(st) + α(Rt + γv(st+1)︸ ︷︷ ︸
TD target

−v(st)

︸ ︷︷ ︸
TD error δt

) (20)

with the custom learning rate α. This also converges to the optimal value function, since
with every update we are updating towards reality through the actually experienced
reward Rt

Unlike the MC algorithm, the TD algorithm does not have to wait until the sequence
is terminated to update v(s), which makes it more convenient to use since it can handle
incomplete or cyclic experience on the fly whereas MC fails in such cases due to it’s need
to have a terminated sequence.

Even though both algorithms eventually converge to the optimal state-value-function,
experience shows that the TD algorithm is usually more efficient than the MC algorithm.

3.3 Policy Iteration
The problem, why under the new circumstances we can not apply the previously dis-
cussed policy iteration, is that the iteration over v(s) requires a model to be able to
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update the agent’s policy
πnew = argmax

a
Ra

s + γPa
s′sv(s

′)

but since we do not have a model (=̂ R and P are unknown) we need to modify the
update rule. To do so, we can simply replace the state-value-function through the action-
value-function which does not require the agent to know the probabilities any more. The
new policy may then be obtained by

πnew(s) = argmax
a

q(s, a) (21)

3.4 Exploration versus Exploitation
Before touching the control task with the MC and TD algorithms, we first need to know
how to deal with the possibility of being stuck in local maxima. During the learning
process the agent needs to solve two apparently contradicting tasks. The exploration
task, the goal of which is to gain all the information possible to be able to chose the best
actions, and the exploitation task, whose goal is to exploit the already gained informa-
tion in order to actually maximize the return. The dilemma is that the agent wants to
gain the information to make better decisions, without giving up on too much rewards
while exploring.

A possible solution to this problem could be to perform such called ϵ-greedy explo-
ration. With m actions available the agent picks a random action with a small probability
of ϵ ∈ [0, 1], which should decrease with the amount of gained information. The greedy
action will then be chosen with the probability of 1− ϵ

π(a|s) =

{
ϵ/m+ 1− ϵ if a∗ = argmaxa q(s, a)

ϵ/m otherwise
(22)

3.5 Monte Carlo and Temporal Difference Control
With the ϵ-greedy exploration we can now apply the same principle as in the model free
policy iteration to solve the control task with the MC and TD algorithms. We simply
take our previous update rules (19) and (20) and replace the state-value-function with
the action-value-function s.t. the update rules become

v(st) ←− v(st) + α(Gt − v(st)) (23)
⇒ q(st, at)←− q(st, at) + α(Gt − q(st, at)) (24)

for the Monte Carlo control and

v(st) ←− v(st) + α(Rt + γv(st+1)− v(st)) (25)
⇒ q(st, at)←− q( st︸︷︷︸

S

, at︸︷︷︸
A

) + α( Rt︸︷︷︸
R

+γq(st+1︸︷︷︸
S

, at+1︸︷︷︸
A

)− q(st, at)) (26)
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for Temporal Difference control, which is commonly called SARSA if used for the control
task.

The policy improvements are done in both cases ϵ-greedily w.r.t. the action-value-
function while reducing the probability to pick a random function with every sequence
k

ϵ←− 1

k
, π ←− ϵ− greedy(q) (27)

4 Function Approximation
By applying the the methods discussed above, we need to store values of the value func-
tions for every state in a look up table. This may work well for small problems, but
becomes too slow and unfeasible very quickly due to memory reasons. E.g. for a game
of go the agent would have to calculate and store values for 10170 states. Furthermore
we have no approach to solve problems with a continuous state space, e.g. flying a heli-
copter or driving a car. With the methods discussed above we would need to try finding
a clever way to reduce or generalize the state space, e.g. defining states as intervals of
certain parameters when dealing with continuous state spaces. Unfortunately reducing
the state space is not always possible.

In practice there is another approach which works pretty well on big problems. Instead
of storing the values of the value functions for every state, we can try to approximate
the value function, which would allow us to generalize from the experienced states we
visit to every possible state we may encounter, without wasting memory.

4.1 State-Value-Function Approximation
To approximate the value function we first need a state representation which can be
obtained by a feature vector x(s)

x(s) = (x1(s), . . . , xn(s))
T (28)

E.g. if the agent needs to navigate through space without hitting any obstacles, the
entries of the feature vector could be the distances to the nearest obstacle for every
direction and the distances to the target.
Next we can begin to get the representation of the state-value-function with any function
approximation we like e.g. with a linear combination of features or a neural network.
To illustrate the idea we will look at the linear combination of features, s.t. our approx-
imated function becomes

v̂(s, w) = x(s)Tw (29)
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with weights w. We can now minimize the mean squared error (MSE) between our
predicted values and the true values we experienced

L(w) = Eπ[(vπ(s)− v̂π(s, w))
2] (30)

by gradient descent. Therefore we need to take the gradient of the MSE w.r.t. the
weights w

∇wL(w) = −2Eπ[vπ(s)− v̂π(s, w)]∇wv̂(s, w)︸ ︷︷ ︸
=x(s)

(31)

hence we get for the weight update

∆w = −1

2
α∇wL(w) (32)

= αEπ[vπ(s)− v̂π(s, w)]x(s) (33)

or if we use stochastic gradient descent to speed up the learning process

∆w = α(vπ(s)− v̂π(s, w))x(s) (34)

The last step is to adapt the weight update to the used algorithm by substituting the
targeted true value vπ(s) for the corresponding returns.
This means for Monte Carlo

v(s) −→ Gt (35)
∆w = α(Gt − v̂π(s, w))x(s) (36)

and for Temporal Difference

v(st) −→ Rt + γv̂(st+1, w) (37)
α(Rt + γv̂(st+1, w)− v̂π(st, w))x(st) (38)

4.2 Action-Value-Function-Approximation
To be able to solve the control task the same can be done for the action-value-function,
with the slight difference that the feature vector in this case needs to depend not only
on the state, but also on the action

x(s, a) = (x1(s, a), . . . , xn(s, a))
T (39)

the approximated action-value-function is then

q̂(s, a, w) = x(s, a)Tw (40)

Minimizing the MSE yields the weight updates with stochastic gradient descent

∆w = α(qπ(s, a)− q̂π(s, a, w))x(s, a) (41)
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Analogue to the previous section we now need to substitute the targeted true value
qπ(s, a) for the corresponding returns which gives us the update rules for Monte Carlo

q(s, a) −→ Gt (42)
∆w = α(Gt − q̂π(s, a, w))x(s, a) (43)

and Temporal Difference

q(st, at) −→ Rt + γq̂(st+1, at+1, w) (44)
α(Rt + γq̂(st+1, at+1, w)− q̂π(st, at, w))x(st, at) (45)

5 Conclusion
In general reinforcement learning is a very handy addition to the commonly used machine
learning techniques and has a strong stance in a certain kind of problems like controlling
the movement of machines of beating humans in most kind of video games. As the
title suggests, this report should have given a short introduction into the topic and
does not claim all-encompassing, since there are still plenty interesting topics which
ware not discussed e.g. experience replay or how to properly deal with non-stationary
environments. Even though reinforcement learning methods might look promising they
should not be applied to any kind of problem thoughtlessly, since in general they need
much longer training as other machine learning techniques, if applicable. Reinforcement
learning should rather be used as deus ex machina if all other methods fail.
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