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Introduction

Automatic Speech Recognition (ASR)

Definition Automatic transformation of spoken language by
humans into the corresponding word sequence.
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Introduction

Speech recognition as classification problem

Figure: ASR as classification problem
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Introduction

ASR Applications

What are the applications for ASR and what do they imply?
Dictation (Lawyer, Doctor, ...)
Control devices/systems (Mobile, car, ...)
Language translation
Education (Teach reading)

Depending on the application we face different problems and
challenges

1 Does training data fit our purpose?
2 What are the enviromental acoustical settings for our

application?
3 . . .
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Introduction

ASR Advantages

Speed
Keyboard 200-1000 characters per minute
Speech 1000-4000 characters per minute

No need of using hands or eyes
Communication with systems/devices naturally
Portable
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Introduction

ASR Disadvantages

Locational requirements
Not usable in locations where silence is required
Not usable in loudy enviroments

Error rate still to high
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Introduction

Difficulties

Variability
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Introduction

Difficulties

Size Number of word types in vocabulary
Speaker speaker-independency, adaptation to
speaker characteristics and accent
Acoustic environment Noise, competing speakers,
channel conditions (microphone, phone line, room
acoustics)
Style Planned monologue or spontaneous
conversation.Continuous or isolated speech.
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Introduction

Difficulties

Figure: The word ”Sieben” recorded three times
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Introduction

History

1952 Bell Labs single speaker digit recognition
1968 Dynamic Time Warping (DTW) for Speech Recognition
by Vintsyuk
1969 Hidden Markov Models (HMM) by Leonard Baum
1997 Long short-term memory (LSTM) by Hochreiter and
Schmidhuber
2006 Connectionist Temporal Classification (CTC) by Graves
et al.
2007 LSTM Models trained by Connectionist Temporal
Classification (CTC) outperforms traditional systems in
certain applications
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Architecture

Standard ASR Pipeline

Figure: ASR Pipeline
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Preprocessing

Why do we need signal processing?

Need a form of signal we can work with easily
Extract relevant information
Filter unnecessary information

Speaker-dependent information
Acoustical enviroment
Microfon

Reduction of data size
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Preprocessing

Spectogram

Figure: Deep Learning School 2016 (Talk: Adam Cotes, Baidu)
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Preprocessing

Spectogram

Figure: Deep Learning School 2016 (Talk: Adam Cotes, Baidu)
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Preprocessing

Mel Frequency Cepstral Coefficients(MFCC)
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Preprocessing

Make signal processing intelligent again

Using audio wave as raw input for model training
Sainath et al., Interspeech 2015
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Decoding
Acoustic Model

Fundamental Equation of Statistical Speech Recognition

Let X be a sequence of acoustic feature vectors
Let W denote a word sequence
Let W ∗ denotes the most likely word sequence

W ∗ = argmaxW P(W |X )

= arg max
W

P(X |W )P(W )
P(X ) (Bayes Theorem)

= arg max
W

P(X |W )︸ ︷︷ ︸
Acoustic model

P(W )︸ ︷︷ ︸
Language Model
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Decoding
Acoustic Model

Approach

There are two approaches for developing an acoustic model
1 Hidden Markov Model
2 Neural Networks
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Decoding
Acoustic Model

Stochastic process

Definition (Markov chain of order n)

P(Xt+1 = st+1|Xt = st , . . . ,X0 = s0)
= P(Xt+1 = st+1|Xt = st , . . . ,Xt−n+1 = st−n+1)
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Decoding
Acoustic Model

Hidden Markov Model (HMM)
Suppose you cannot observe the states .

Figure: A Tutorial on Hidden Markov Models by Rabiner
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Decoding
Acoustic Model

HMM Definition λ = (A; B; π)

N is number of states in the model. S is the set of states
S = (S1, . . . ,SN) and the state at time t as qt

M is number of disctinct observations per state. Observations
are denoted by V = v1, . . . , vM

State transition probability distribution Aij = {aij} where

aij = P[qt+1 = Sj |qt = Si ], 1 ≤ i , j ≤ N

Observation symbol probability distribution in state j,
B = {bj(k)}, where

bj(k) = P[vk at t|qt = Sj ], 1 ≤ j ≤ N, 1 ≤ k ≤ M

Initial state distribution π = {πi}, where πi = P[q1 = Si ] for
1 ≤ i ≤ N
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Decoding
Acoustic Model

HMM Assumptions

Figure: Probabilistic finite state automaton (Renals and Bell, ASR
Lecture, Edinburgh)

1 Observation independence An acoustic observation x is
conditionally independent of all other observations given the
state that generated it

2 Markov process A state is conditionally independent of all
other states given the previous state
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Decoding
Acoustic Model

Output Distribution

Figure: Probabilistic finite state automaton (Renals and Bell, ASR
Lecture, Edinburgh)

bj(x) = p(x |sj) = N (x ;µj ,Σj) (Single multivariate Gaussian)
bj(x) = p(x |sj) =

∑M
m=1 cjmN (x ;µjm,Σjm) (M-component

Gaussian Mixture Model)
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Decoding
Acoustic Model

The three HMM Challenges

1 Evaluation Given a HMM λ, an Output O → What is the
probabilty that O is an Output of the HMM λ: P(O|λ)?
Forward or Backward Algorithm

2 Decoding Given a HMM λ, an Output O. Find a sequence of
States Ŝ = sj1, . . . , sjT for which holds Ŝ = argmaxSP(S,O|λ)
Viterbi Algorithm

3 Training Given a HMM λ and a set of Training Data O. Find
better Parameters λ′ such that P(O|λ) < P(O|λ′)
Baum Welch Algorithm
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Decoding
Acoustic Model

1. The Forward Algorithm

Goal Estimate P(O|λ)
We need to sum over all possible state sequences
s1, s2, . . . , sT that could result in the observation sequence O
Rather than enumerating each sequence, compute the
probabilities recursively (exploit the Markov Assumption)
Forward Probability αt(sj):the probability of observing the
observation sequence o1, . . . , ot and being in state sj at time t:

at(sj) = p(x1, . . . , xt , S(t) = sj |λ)
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Decoding
Acoustic Model

1. The Forward Algorithm

1 Initialization
α0(sl ) = 1
α0(sj) = 0 if sj 6= sl

2 Recursion

αt(sj) =
N∑

i=1
αt−1(si )aijbj(ot)

3 Termination

p(O|λ) = αT (sE ) =
N∑

i=1
αT (si )aiE
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Decoding
Acoustic Model

Forward Recursion
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Decoding
Acoustic Model

1. The Backward Algorithm

1 Initialization
βT (i) = 1 , 1 ≤ i ≤ |S|

2 Recursion

βt(i) =
|S|∑
j=1

βj(ot+1)aijβt+1(j) , 1 ≤ i ≤ |S| , 1 ≤ t < T

3 Termination

p(O|λ) =
|S|∑
j=1

πjbj(o1)β1(j)
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Decoding
Acoustic Model

Viterbi approximation

Instead of summing over all possible state sequences we
change the summation to a maximation in the recursion

Vt(sj) = maxiVt−1(si )aijbj(xt)

This change in the recursion gives us now the most probable
path
We need to keep track of the states that make up this path by
keeping a sequence of backpointers to enable a Viterbi
backtrace: the backpointer for each state at each time
indicates the previous state on the most probable path
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Decoding
Acoustic Model

Viterbi approximation
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Decoding
Acoustic Model

Viterbi approximation
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Decoding
Acoustic Model

2.Decoding: The Viterbi Algorithm

1 Initialization
V0(sl ) = 1
V0(sj) = 0 if sj 6= sl

bt0(sj) = 0
2 Recursion

Vt(sj) = Nmax
i=1

Vt−1(si )aijbj(ot)

btt(sj) = arg Nmax
i=1

Vt−1(si )aijbj(ot)

3 Termination

P∗ = VT (sE ) = Nmax
i=1

VT (si )aiE

s∗T = btT (qE ) = arg Nmax
i=1

VT (si )aiE
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Decoding
Acoustic Model

Viterbi Backtrace
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Decoding
Acoustic Model

3.Training:Baum-Welch Algorithm

1 Forwad procedure
Let αi (t) = P(Y1 = y1, ...,Yt = yt ,Xt = i |θ), the probability
of seeing the y1, y2, ..., yt and being in state i at time t.

2 Backward procedure
Let βi (t) = P(Yt+1 = yt+1, ...,YT = yT |Xt = i , θ) that is the
probability of the ending partial sequence yt+1, ..., yT given
starting state i at time t.

3 Update

γi (t) = P(Xt = i |Y , θ) = αi (t)βi (t)∑N
j=1 αj(t)βj(t)

ξij(t) = P(Xt = i ,Xt+1 = j |Y , θ) = αi (t)aijβj(t + 1)bj(yt+1)∑N
i=1

∑N
j=1 αi (t)aijβj(t + 1)bj(yt+1)
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Decoding
Acoustic Model

3.Training:Baum-Welch Algorithm

Update parameters

π∗i = γi (1)

a∗ij =
∑T−1

t=1 ξij(t)∑T−1
t=1 γi (t)

b∗i (vk) =
∑T

t=1 1yt=vkγi (t)∑T
t=1 γi (t)
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Decoding
Acoustic Model

Neural networks for acoustic models

Goal create a neural network (DNN/RNN) from which we can
extract transcription y. Train with labeled pairs (x , y∗).

Figure: Deep Learning School 2016 (Adam Cotes, Baidu)
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Decoding
Acoustic Model

Recurrent Neural Network (RNN)

Figure: http://colah.github.io/posts/2015-09-NN-Types-FP/

36 / 59



Decoding
Acoustic Model

Recurrent Neural Network (RNN)

Figure: http://colah.github.io/posts/2015-09-NN-Types-FP/

Forward propagation

hi = σ(Whhhi−1 + Whxxi + bh)
ŷi = Wyhhi
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Decoding
Acoustic Model

Long Short-Term Memory (LSTM)

Figure: Long Short-term Memory Cell from Graves et al. 2013
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Decoding
Acoustic Model

Long Short-Term Memory (LSTM)

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi )
ft = σ(Wxf xt + Whf ht−1 + Wcf ct−1 + bf )
ot = σ(Wxoxt + Whoht−1 + Wcoct + bo)
ct = ftct−1 + ittanh(Wxcxt + Whcht−1 + bc)
ht = ottanh(ct)
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Decoding
Acoustic Model

Bidirectional RNN (BRNN)

Figure: http://colah.github.io/posts/2015-09-NN-Types-FP/
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Decoding
Acoustic Model

Train acoustic model

Main issue length(x) 6= length(y)
Solution

Connectionist Temporal Classification [Graves et al., 2006]
Attention, Sequence to Sequence
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Decoding
Acoustic Model

Connectionist Temporal Classification (CTC)

Basic idea
1 RNN output neurons c encode distributions over symbols.

(length(c)=length(x))
For phoneme based models
c ∈ {AA,AE ,AX , . . . ,ER1, blank}
For grapheme based models c ∈ {A,B,C , . . . , blank}

2 Define mapping β(c)→ y
3 Maximize likelihood of y∗ under this model
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Decoding
Acoustic Model

Connectionist Temporal Classification (CTC)

Basic idea
1 RNN output neurons c encode distributions over symbols.

(length(c)=length(x))
For grapheme based models c ∈ {A,B,C , . . . , blank}

2 Output softmax neurons defines distribution over whole
character sequences c assuming independency:

P(c|x) =
N∏

i=1
P(ci |x)

P(c = HH E L LO |x) = P(c1 = H|x)P(c2 = H|x) . . .P(c15 = blank|x)

How do we get our independency?
→ Forbid connections from the output layer to other output layers
or to other hidden layers
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Decoding
Acoustic Model

Connectionist Temporal Classification (CTC)

Basic idea
2 Define function β(c) = y

What it does:
squeeze out duplicates
removes blanks

y = β(c) = β(HH E L LO ) = ”HELLO”

46 / 59



Decoding
Acoustic Model

Connectionist Temporal Classification (CTC)

Our function gives us a distribution for all possible
transcriptions y
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Decoding
Acoustic Model

Connectionist Temporal Classification (CTC)

3 Update network parameters θ to maximize likelihood of
correct label y∗:

θ∗ = arg max
θ

∑
i

logP(y∗(i)|x (i))

= arg max
θ

∑
i

log
∑

c:β(c)=y∗(i)

P(c|x (i)) (Thanks CTC)
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Decoding
Acoustic Model

Decoding

How do we find most likely transcription

ymax = max
y

P(y |x)

Best Path Decoding (not the most likely)

β(arg max
c

P(c|x))
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Decoding
Language Model

Language Model

Figure: Examples of transcriptions directly from the RNN (left) with
errors that are fixed by addition of a language model (right). (Hannun et
al. 2014)
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Decoding
Language Model

Standard approach: N-gram Model

Goal Apply grammar and spelling rules

Word sequence wn
1 = w1 . . .wn

N-gram approximation

P(wn
1 ) =

n∏
k−1

P(wk |wk−1
k−N−1)
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Decoding
Language Model

Decoding with LM

Given a LM Hannun et. al optimizes:

arg max
w

P(w |x)P(w)α[length(w)]β

α is tunable parameter to govern weight of LM
β penalty term for long words
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Decoding
Language Model

Decoding with LM’s

Basic strategy Beam search to maximize

arg max
w

P(w |x)P(w)α[length(w)]β

Start with set of candidate transcript prefixes A = {}.
For t = 1, . . . ,T
For each candidate in A consider

1 Add blank; dont change prefix; update probability using AM;
2 Add space to prefix; update probability using LM
3 Add a character to prefix; update probability using AM; Add

new candidates with updated probabilities Anew

A:=K most probable prefixes in Anew
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Decoding
Language Model

Neural Network Language Model

Idea: Rescore list of candidate transcriptions on basis of
neural network

N-gram model just gave us grammar and spelling
rules but sometimes we need also “semantic
understanding”
neural network models to simulate the semantic
correctness of candidate transcriptions

RNN
LSTM
...
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Concluding Remarks

End to end Speech Recognition with neon

Figure: https://www.nervanasys.com/end-end-speech-recognition-neon/
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Concluding Remarks

State of the art (IBM, March 2017)

Acoustic model score fusion of three models: one LSTM
with multiple feature inputs, a second LSTM trained with
speaker-adversarial multi-task learning and a third residual net
(ResNet) with 25 convolutional layers and time-dilated
convolutions
Language model word and character LSTMs and
convolutional WaveNet-style language models.
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Concluding Remarks

Summary

Historically used approach for ASR: Dynamic Time Warping
later statistical models
Standard ASR Pipeline: 1.Signal Processing 2. Acoustic
Model 3.Language Model
Signal processing: MFCC
Acoustic model two approaches: HMM and Neural Networks

GMM for HMM Distribution
Three problems of HMM: Evaluation(Forward/Backward
Algorithm), Decoding(Viterbi), Training (Baum-Welch
Algorithm)
Neural networks approach: RNN, LSTM, BRNN
Neural networks training: CTC

Language Model: N-gram model
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Concluding Remarks

Future

End-to-end systems: Go deeper in the whole pipeline
Image Processing: Lip reading?
Train better: Batch normalization (Ioffe and Szegedy, 2015)
and more
Scale: More data, better data, more computational power, ...

58 / 59



Concluding Remarks

Bibliography

Connectionist Temporal Classification: Labelling Unsegmented
Sequence Data with Recurrent Neural Networks (Graves et
al,. 2006)
Deep Speech: Scaling up end-to-end speech recognition
(Hannun et al., 2014)
Towards End-to-End Speech Recognition with Recurrent
Neural Networks (Graves and Jaitly, 2014)
Generating Sequences With Recurrent Neural Networks
(Graves, 2014)
Speech Recognition with Deep Recurrent Neural Networks
(Graves, Mohamed and Hinton, 2013)
Bidirectional Recurrent Neural Networks (Schuster and
Paliwal, 1997)
A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition (Rabiner et al., 1989)

59 / 59



Concluding Remarks

Bibliography

English Conversational Telephone Speech Recognition by
Humans and Machines (Saon et al.,2017)
Deep Neural Networks for Acoustic Modeling in Speech
Recognition (Hinton et al.,2012)

60 / 59


