
Methods for interpreting and understanding deep neural

networks
Seminar Report: Explainable Machine Learning SS18

Philipp Wimmer

July 9, 2018

Contents

1 Motivation 2

2 Theoretical Background 3
2.1 Bayes’ Theorem . 3
2.2 DNN . 3
2.3 Gaussian restricted Boltzmann machines 4
2.4 Generative Adverserial Autoencoders . 4

3 Interpretation 5
3.1 Activation maximization . 5
3.2 Activation maximization with an expert 6
3.3 Activation maximization in Code Space 6
3.4 Experimental Results . 7

4 Explanation 8
4.1 Sensitivity Analysis . 8
4.2 Simple Taylor decomposition . 8
4.3 Layer-wise relevance propagation . 9
4.4 Experimental Results . 10

5 Conclusion 12

1

1 Motivation

Our goal in the seminar ”Explainable Machine Learning” is to gain insight into how
the state-of-the-art machine learning models work. Prior to this seminar, the models
were defined on an algorithmic level. However, the new goal is to get a deep qualitative
understanding of how they work. Enabling us to gage how well we can trust them. The
models were seen as a black box. The goal is to open this box.
The paper that was chosen is ”Methods for interpreting and understanding deep neural
networks” from Montavon et. al.[3]. Deep Neural networks work exceedingly well in
many machine learning tasks and for example enable huge advancements in the field of
computer vision. The universal approximation theorem gives us mathematical proof that
these networks can (in theory) learn any concept. Training these models via gradient
descent is also rather straight forward. Also the success can be seen by the fact that
nearly every top spot in the many machine learning challenges is occupied by a deep
learning algorithm. But this performance comes at the price of higher model complexity.
Whereas the shallow models used earlier (like logistic regression) had clear limitations
and were easy to understand, this new class of universal approximators is way harder
to verify. The most used way of verifying DNNs is to measure the performance on a
test data set. This is not enough information to trust the decisions made by these deep
models. We do not know how the decision was made and if the model learned the right
concept. The model may exhibit failure modes that are simply not found by testing on
the test set. The paper introduces two fundamental approaches to solve this problem:
Interpretation and Explanation. Both methods are for better post-hoc interpretability,
thus enabling the exploration of already existing and even pretrained DNNs.

2

2 Theoretical Background

2.1 Bayes’ Theorem

Combining the two rules of probability and using the symmetry property of joint prob-
ability

sum rule p(A) =
∑
B

p(A,B) (2.1)

product rule p(A,B) = p(B|A)p(A) (2.2)

symmetry p(A,B) = p(B,A) (2.3)

one arrives at:

Bayes’ Theorem p(A|B) =
p(B|A) · p(A)

p(B)
(2.4)

(2.5)

Applied to machine learning models, where x represents the data and wc is the learned
class, one gets:

p(wc|x) =
p(x|wc) · p(wc)

p(x)
(2.6)

This theorem plays a fundamental role in the statistical interpretation of machine learn-
ing models. Models can be divided into two different groups: discriminative and gen-
erative models. Discriminative models approximate the decision boundary between the
classes. They model the left side of the equation p(wc|x) called the posterior probability.
Generative models learn the right side of the equation. They effectively learn the joint
probability p(wc,x), thus enabling the generation of new data by sampling from this
distribution.

2.2 DNN

Deep neural networks (DNNs) are a special kind of artificial neural networks with a deep
hierarchical structure. They are able to learn complex relationships between their input
and output parameters. They fall under the category of discriminative models. The
activations of the individual neurons are calculated by:

ak = σ

∑
j

ajwjk + bk

 (2.7)

3

σ is a nonlinearity and wjk is the matrix of the learned network weights. Provided

that the output linearity used is the softmax function Oj = eaj∑
k eak and a suitable loss

function is used (for example cross entropy loss), the output of the network approximates
the posterior probability p(wc|x). Multilayer networks (with at least one hidden layer)
can approximate any continuous function on compact subsets of Rn if their capacity
is high enough. See proof in [2]. The problem with these models is that despite their
high performance, they do not inspire trust in their results. This is due to the fact that
there is no obvious way to interpret the (possibly very large) learned weight vector. The
performance is usually measured by cross validation but this does not rule out failures
when working on real life data.

2.3 Gaussian restricted Boltzmann machines

Gaussian restricted Boltzmann machines introduced by Salakhutdinov et. al [4] fall
under the category of generative models. They are a class of two layer undirected
graphical models and are able to represent complex distributions. Their log-probability
function can be written as:

log p(x) =
∑
j

fj(x)− λ||x||2 + const (2.8)

where

fj(x) = log(1 + exp(w>j x) + bj) (2.9)

are factors learned from the training data.

2.4 Generative Adverserial Autoencoders

Generative Adverserial Autoencoders (GANs) as introduced by Goodfellow et. al. [1]
fall under the category of generative models. They consist of two different models that
are trained in an adversarial training procedure: A generative model G captures the
data distribution and a discriminator D tries to differentiate between data generated by
G and the training data. G generates its output from a random noise vector z. Thus,
they play a minimax game with the value function V (G,D).

min
G

max
D

= Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log(1−D(G(z)))] (2.10)

4

3 Interpretation

The authors define an interpretation as:

(...) the mapping of an abstract concept (e.g. a predicted class) into a domain
that the human can make sense of.

In the context of object classification, the interpretable domain is the space of all possible
images. In the concrete example provided in the paper, the abstract concept is the
range of digits from 0 to 9. The result of an interpretation is the construction of a
prototype image for a given class. In the perfect case, these prototype images would be
indistinguishable from real images and appropriately represent the concept one wanted
the DNN to learn.
The task of interpretation is an interesting one because one tries to generate data with
a discriminative model. This poses problems because the posterior probability, that the
model approximates, is not enough to generate data.
In the following the technique of Activation maximization is presented as a tool to
construct these prototypes. This simple approach will later be improved upon to produce
more satisfying results.

3.1 Activation maximization

The goal of Activation maximization (AM) is to maximize the activation of the output
neurons of the DNN. The idea is to present an initial random image only consisting
of noise to the DNN and calculate the response. Then, the response is maximized via
gradient ascent. This is similar to the training phase only that the objective is changed.
Instead of the weights the individual pixels of the image get modified. This corresponds
to maximizing the following expression:

max
x

log p(wc|x)− λ||x||2 (3.1)

The class probability p(wc|x) is encoded in the output neurons and the `2-Regularizer
λ||x||2 is needed because there are many local minima. Without this regularizer the
maximization would not be stable. Subsequently, inputs close to the origin are favored.
This preference to the origin creates mostly gray sparse images with structure only in
certain parts of the image region. These prototypes do not look natural and thus do not
encourage a high trust that the DNN learned the right concept.

5

3.2 Activation maximization with an expert

The solution to the problem of unnatural images is to introduce a more sophisticated
regularizing term. The `2-Regularizer is replaced with a model of the data.

max
x

log p(wc|x) + log p(x) (3.2)

On first sight, the difference is not fundamental. By applying Bayes’ theorem, how-
ever, one can see that maximizing the expression is equivalent to maximizing the class-
conditioned data density p(x|wc).

p(wc|x) =
p(x|wc) · p(wc)

p(x)

log p(wc|x) = log p(x|wc) + log p(wc)− log p(x)

log p(x|wc) = log p(wc|x) + log p(x)− log p(wc)

log p(x|wc) = log p(wc|x) + log p(x) + const

Provided that a suitable p(x) was used, this quantity actually represents a good proto-
type. The found prototype x∗ then represents the most likely input for a given concept
wc.
This additional term enables the creation of data through a discriminative model. But
this data density p(x) has to be learned by a (possibly very complex) generative model
and may be difficult to maximize. In practice, Gaußian RBMs are used for this purpose.
Additionally, the right choice of expert is very important. Even though the perfect case
would be the real data density, this goal is often not achievable. While an overfitted ex-
pert may produce realistic looking prototypes, it may also hide interesting failure modes
of the model. In this case the prototypes only fit the expert and the role of the model
diminishes. For verification, an underfitted expert is preferable because it favors natural
images and does not hide failure modes.

3.3 Activation maximization in Code Space

Learning the data density can be quite complex and is often difficult to maximize. In
this step, a Generative Adverserial Autoencoder is used that learns the data density
implicitly. Instead of maximizing in the interpretable domain, the maximization takes
place in an abstract code space Z.

max
z∈Z

log p(wc|g(z))− λ ||z||2 (3.3)

The expression that gets maximized shares a striking resemblance to eq. (3.1) but in fact
it is mathematically much closer to eq. (3.2). This is because the code space is gaußian
distributed.

p(z) ∝ exp(−x2) (3.4)

log p(z) ∝ −x2 (3.5)

6

Thus maximizing eq. (3.3) is equivalent to:

max
z∈Z

log p(g(z)|wc) = max
z∈Z

log p(wc|g(z)) + log p(z) (3.6)

Again, the resulting prototype x∗ is the most likely point for the concept wc.

3.4 Experimental Results

The authors tested the implementations on the MNIST-dataset. One can see that the
version with the simple `2-Regularizer performs badly and produces unsharp images.
The quality of the version with the expert and the version with the decoder perform
equally well.

Figure 3.1: The architecture of activation maximization: One can see that the objective
for the simple AM log p(wc|x) differs from the objective of the two other
architectures log p(x|wc). In the first case the class probability (posterior)
gets maximized and in the second and third the class conditioned data density
(likelihood) gets maximized, rendering way better results.

7

4 Explanation

The authors defined an explanation as:

(...) the collection of features of the interpretable domain, that have con-
tributed for a given example to produce a decision (e.g. classification or
regression).

In the context of image classification, an explanation is the collection of all pixels that
led the models to its decision. This can be visualized as a heatmap. More precisely, it is
a visualization of how important each pixel was in order to arrive at the decision. This
can, for example, lead to the discovery of anomalies in the model. The test data may be
classified correctly but the DNN exploited an anomaly in the training data (always the
same background for the same classes). Consequently, it may exhibit bad generalization
performance.

4.1 Sensitivity Analysis

The goal of sensitivity analysis is to assign a local relevance score to each individual
pixel. Relevance is usually defined as a measurement of local slope of the models decision
function f .

Ri(x) =

(
∂f

∂xi

)2

(4.1)

The problem with this simple definition is that it is only a measurement of local variance.
The obtained scores are not the answer to the question ”How much did pixel i contribute
to the decision?” Instead one asks ”How much did pixel i make the data belong more or
less to the predicted class?”

4.2 Simple Taylor decomposition

One way to produce absolute relevance scores is the simple Taylor decomposition. Now
the relevance scores are defined to be a decomposition of the relevance scores. The scores
Ri are defined in terms of the Taylor expansion.

f(x) =
d∑

i=1

Ri(x) +O(xx>) (4.2)

Ri(x) =
∂f

∂xi

∣∣∣∣
x=x̃

· (xi − x̃i) (4.3)

8

The decomposition in these scores is not exact because the higher order terms O(xx>)
are neglected. However, piecewise functions that satisfy the property

f(tx) = t f(x), t ≥ 0 (4.4)

do not exhibit this limitation. There f(x) can be decomposed exactly by

f(x) =

d∑
i=1

Ri(x) (4.5)

Ri(x) =
∂f

∂xi
· xi (4.6)

The obtained relevance score can be interpreted as the product of local sensitivity ∂f
∂xi

and saliency xi. Thus, a high relevance score does not only mean that the model reacts
to it, but also that it is present in the data.

4.3 Layer-wise relevance propagation

An alternative to decomposition models are backward propagation techniques. In layer-
wise relevance propagation (LRP) Relevance is defined to be a quantity that is dis-
tributed and flowing backwards through the network. Relevance has to satisfy the con-
servation property ∑

j

Rj←k = Rk (4.7)

where Rj←k is the relevance flowing from a neuron in layer k to a higher level j. Local
conservation of relevance does also imply

Rj =
∑
k

Rj←k (4.8)

Combining these two equations also ensures the total conservation of Relevance.∑
j

Rj =
∑
j

∑
k

Rj←k =
∑
k

∑
j

Rj←k =
∑
k

Rk = f(x) (4.9)

One propagation rule satisfying these conditions is the αβ-rule

Rj =
∑
k

(
α

ajw
+
jk∑

j ajw
+
jk

− β
ajw

−
jk∑

j ajw
−
jk

)
Rk (4.10)

where the two hyperparameters α and β have to satisfy the constraints α − β = 1 and
β ≥ 0. These define the relative importance of the positive and negative parts. The rule
can be rewritten to

Rj =
∑
k

ajw
+
jk∑

j ajw
+
jk

R∧k +
∑
k

ajw
−
jk∑

j ajw
−
jk

R∨k (4.11)

9

Figure 4.1: Visualization of the backwards flow of Relevance through a deep neural
network.

with

R∧k = αRk (4.12)

representing Relevance and

R∨k = −βRk (4.13)

representing counter-Relevance. There are special variants of this rule for the speciality
layers used in modern neural networks. The authors also provided proof that LRP with
α = 1 and β = 0 is equivalent to layerwise application of the simple Taylor decomposi-
tion.

4.4 Experimental Results

The authors of the paper tested the implementations on the MNIST-Dataset. One can
see that the simple Taylor decomposition does not produce satisfying results. It does
produce a large proportion of the pixel to go against class evidence. The authors argue
that this is due to the fact that root point x̃ used in the Taylor expansion is too dissimilar
to the actual data x. Thus, it does not contextualize the explanation appropriately.

10

Figure 4.2: Heatmaps obtained by simple Taylor Decomposition. Red corresponds to
Relevance and blue to counter-Relevance. Too much counter-Relevance is
distributed.

LRP does produce way more satisfying results. The produced heatmaps appropriately
map to the regions of the images that would be labeled as relevant by a human observer.
The authors stress that the best values for the hyperparameters have to be chosen
experimentally for each model. For the concrete model used in the paper α = 3 and
β = 2 produce unstable results with too much counter-Relevance being accounted.

Figure 4.3: Heatmaps obtained by LRP with varying hyperparameters. Red corresponds
to Relevance and blue to counter-Relevance. For β = 0 no counter-Relevance
is distributed and for β > 1 the results get unstable.

11

5 Conclusion

The authors of the paper provided two different approaches in order to enable better
understanding and verification of DNNs. These approaches can be applied to already
trained DNNs and there is no need to make any modifications. Moreover, they only
demand a small investment to implement. Thus, they should be essential tools for anyone
working with DNNs. Finally, the construction of prototypes enables the investigation of
the concept that the model has learned and if it is identical to the one humans wanted it
to learn. The heatmaps, produced as Explanations, nicely visualize the decision process.
They also make it possible to examine how sensitive the model is to the context. The
authors did manage to present two ways to enlarge the trust in the decision made by
DNNs. Thus, they succeeded at narrowing the interpretability gap towards simpler
models like logistic regression.

12

Bibliography

[1] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in neural infor-
mation processing systems. 2014, pp. 2672–2680.

[2] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward
networks are universal approximators”. In: Neural networks 2.5 (1989), pp. 359–
366.

[3] Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. “Methods for in-
terpreting and understanding deep neural networks”. In: Digital Signal Processing
(2017).

[4] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. “Restricted Boltzmann
Machines for Collaborative Filtering”. In: Proceedings of the 24th International
Conference on Machine Learning. ICML ’07. Corvalis, Oregon, USA: ACM, 2007,
pp. 791–798. isbn: 978-1-59593-793-3. doi: 10.1145/1273496.1273596. url: http:
//doi.acm.org/10.1145/1273496.1273596.

13

https://doi.org/10.1145/1273496.1273596
http://doi.acm.org/10.1145/1273496.1273596
http://doi.acm.org/10.1145/1273496.1273596

	Motivation
	Theoretical Background
	Bayes' Theorem
	DNN
	Gaussian restricted Boltzmann machines
	Generative Adverserial Autoencoders

	Interpretation
	Activation maximization
	Activation maximization with an expert
	Activation maximization in Code Space
	Experimental Results

	Explanation
	Sensitivity Analysis
	Simple Taylor decomposition
	Layer-wise relevance propagation
	Experimental Results

	Conclusion

