
Artificial intelligence for games

Programming a Computer to play
Chess in the 1950s

term paper by

Jacqueline Wagner

Submitted to

PD Dr. Ullrich Köthe
on May 8, 2019,

spring semester 2019

Abstract

In this term paper we will take a closer look at the beginning stages of artificial
intelligence, especially first attempts made in programming a computer to play
chess. We will dive deeper into different chess-algorithms formalized by (1) Claude
E. Shannon and (2) Alan Turing and will compare brute force and selective search
strategies.

For further questions contact:
Jacqueline Wagner
jacqueline.wagner@stud.uni-heidelberg.de

Matriculation number 3390137

Jacqueline Wagner
Matriculation number 3390137

University of Heidelberg
Artificial intelligence for games

Contents

1 Introduction 1

2 The brute force search strategy 3
2.1 Playing a perfect game of chess . 3
2.2 Playing a skillful game of chess . 3
2.3 Shannon’s type A strategy . 4

2.3.1 A simple example . 4
2.3.2 Necessary hardware . 5
2.3.3 Constructing an executable program 5

2.4 Ideas for further improvements . 7

3 A more advanced selective search strategy 8
3.1 Shannon’s Type B strategy . 8
3.2 Turing’s strategy . 9
3.3 Problems to consider . 9

4 Conclusion 11

i

Jacqueline Wagner
Matriculation number 3390137

University of Heidelberg
Artificial intelligence for games

1 Introduction

Could one make a machine which would have feelings like you and I do?

Alan Turing in [8]

The ever evolving goal of creating artificial intelligence has fascinated computer sci-
entists for decades. Whether it’s a machine capable of human thought or simply an
algorithm capable of solving the game of chess, theories, possible solutions and predic-
tions continue to attract wide spread attention. While it is no longer questionable that
computers have much higher capabilities when it comes to processing logic, the question
as to whether or not computers will one day be able to feel like humans remains unan-
swered. Although this question unarguably is of high interest, most scientist agree that
we must first lay the theoretical foundation by solving less complicated problems of a
similar nature. This realization combined with the well-defined nature of chess soon lead
many researchers to devote their time to programming a computer to solve chess.

Claude E. Shannon The first paper to ever be published on this topic was written
by American mathematician and Nobel prize winner Claude Shannon. His 1949 paper
“Programming a Computer to play Chess” [6] laid the theoretical groundwork for genera-
tions of researchers to come. Like many scientists alike, Shannon enjoyed playing a game
of chess in his free time. However, unlike most of his peers, he was skilled enough to last
for 42 moves against one of the most highly regarded chess players in the world. His skill
and interest undoubtedly fueled his passion for constructing a superhuman algorithm.

Figure 1: Claude E. Shannon from [4]

1

Jacqueline Wagner
Matriculation number 3390137

University of Heidelberg
Artificial intelligence for games

Alan Mathison Turing Praised by many historians as the father of computer science,
Turing’s many groundbreaking discoveries still influence and inspire the way computer
scientists work today. In his short life Turing not only single-handedly changed the
outcome of World War II, he also made many technological advances in the field of
Computer Science. Although the term AI was not created until 1956, two years after
Turing’s death, he came up with fundamental theories in AI which continued to be
relevant over the decades. Similar to Shannon, he saw chess as a way to test the true
ability of emerging generations of AI.
Turing began working on his chess-solving algorithm in 1948 when computers were

not yet capable of solving complex problems. After finishing his algorithm in 1950 he
resorted to executing the calculations using pen and paper in order to test the ability
of his work. He played against his friend Champernowne and Champernowne’s wife –
a rookie in chess – taking anywhere up to 30 minutes per move. While his algorithm
unfortunately couldn’t beat his advanced chess player friend, it was able to stand the
test against his friends wife. Turing published his ideas for a chess-solving algorithm in
his 1953 Paper “Digital Computers applied to Games” [8].
Alan Turing died in 1954 after being prosecuted and subsequently chemically castrated
for his relationship with another man. Following his death many of his early advances
fell into darkness and weren’t rediscovered for decades to come. In June 2012, his
algorithm Turbochamp finally got the chance to play the world champion chess player at
the Alan Turing Conference in Manchester. While it didn’t stand a chance against Garry
Kasparov, he later stated “I suppose you might call it primitive, but I would compare
it to an early car – you might laugh at them but it is still an incredible achievement.
He wrote algorithms without having a computer -– many young scientists would never
believe that was possible. It was an outstanding accomplishment.” [3]

Figure 2: Alan Turing from [5]

2

Jacqueline Wagner
Matriculation number 3390137

University of Heidelberg
Artificial intelligence for games

2 The brute force search strategy

2.1 Playing a perfect game of chess

For certain games an evaluation function f(P) can be constructed, which can determine
for every position P whether the position is lost, won or drawn. Given such a function
f(P), it is very easy to design a machine capable of playing a perfect game. Since all
chess games end after a finite number of moves such a machine would simply have to
consider all possible moves in the game. However, both Shannon and Turing quickly
realized that such a machine would likely never exist. They assumed that even with
very high computing speeds the number of possible ways of playing chess is undoubtedly
too large for any machine to evaluate. In fact, the number of possible game variations
in chess is estimated to be around 10120. Therefore, even if a memory cell made up of
about 10, 000, 000 atoms existed, this strategy would still require a computer the size of
earth.
As a result of their findings, both Shannon and Turing decided to give up the idea of

playing a perfect game of chess and instead focused on playing a skillful game of chess
at a level comparable to that of a good human player.

2.2 Playing a skillful game of chess

Since both Shannon and Turing assumed there would never be a perfect function f(P)
they decided to concentrate on constructing a crude evaluation function f(P) based on
values such as the numbers of pieces on the board, possible legal moves, rotation and
mobility. In addition they wanted to enhance their function by using chess principles
with statistic validity, for instance deducting points for an exposed king since this is
generally considered a weakness in the world of chess. Although this type of evaluation
is not perfect, the strategy used is similar to that of human chess masters. Since skillful
players tend to be very good at assessing chess positions, the overall goal quickly shifted
to teaching a machine to evaluate like a human chess master.
A regular chess game between two human players is usually played in a manner where

the players only investigate a certain number of variations move by move until a calm
position on the board has been reached. In this state of stability players tend to invest
more time in assessing moves and increase the depth of their evaluation. To further
imitate the decision process of a human chess player, Shannon as well as Turing decided
to restrict the application of the evaluation function to stable positions.

3

Jacqueline Wagner
Matriculation number 3390137

University of Heidelberg
Artificial intelligence for games

2.3 Shannon’s type A strategy

In his first strategy Shannon opted to apply his evaluation function f(P) after every
single move. Despite knowing that this likely would not result in a satisfactory solution
he saw this strategy as a stepping stone for a more complex solution.
Shannon decided that it would make sense for the algorithm to calculate all variations

out to two moves for each side in order to obtain the resulting positions on the board.
His plan was to apply his evaluation function f(P) to each of these positions. In an
attempt to evaluate how good or bad a certain move in a given position would be, he
concluded that the algorithm would have to move backwards through the decision tree,
minimizing the evaluation function’s output for moves made on the opponent’s side and
maximizing on the machine’s side. Once the algorithm obtained a value for each possible
move in a given position it would choose the one yielding the highest evaluation.

2.3.1 A simple example

To keep it simple the below example is only calculated out to one move deep on each
side.

Figure 3: Strategy A demonstrated in a decision tree from [6]

The example starts off in a position P in which the white player has the choice between
three different moves to make. Shannon’s algorithm determines the resulting three posi-
tions and lists all possible ensuing moves for the black player. In a last step the final nine
positions are listed, resulting in a completed decision tree. At this point the evaluation

4

Jacqueline Wagner
Matriculation number 3390137

University of Heidelberg
Artificial intelligence for games

function f(P) is calculated for all nine positions. The three lowest values of the three
sub trees are then back-propagated, e.g. +0.1 for the first sub tree, and assigned to their
respective nodes. Last but not least the move yielding the highest value out of all three
minimum values is chosen, e.g. +0, 1 meaning that the first move is the one to make.

2.3.2 Necessary hardware

Unlike Turing, Shannon briefly touched on the topic of hardware in his paper.

Figure 4: Hardware deemed necessary to execute strategy A from [6]

He concluded that an internal memory to store numbers in numbered boxed would be
necessary. In addition, his algorithm required an organ capable of performing arithmetics
such as addition or multiplication. He wanted the whole system to operate “according
to a program consisting of elementary orders which operate on the numbered boxed in
the internal memory” [6].
In order to execute the algorithm the program also required some information relating

to the current state of the game. Shannon decided that he would pass the position on
the board by assigning each square a number between −6 and 6.The values −6 to −1

and 1 to 6 would correspond to the six different possibilities for black and white figures
on the board while 0 would refer to an empty square. Furthermore, a value λ would
specify whether it is the black player’s (λ = −1) or the white player’s turn (λ = 1).

2.3.3 Constructing an executable program

In his paper Shannon described the ten building blocks necessary to implement his
strategy A algorithm:

5

Jacqueline Wagner
Matriculation number 3390137

University of Heidelberg
Artificial intelligence for games

• T0: Make a move (a, b, c) in position P to obtain the resulting position. In this
instance a and b refer to the positions occupied by a piece before and after a move
while c specifies a piece in case of promotion.

• T1: Make a list of all possible moves for pawn pieces at square (x, y) in position
P .

• T2− T6: Perform the above evaluation on all other types of pieces.

• T7: Make a list of all possible moves for all pieces in a given position P .

• T8: Calculate the evaluation function f(P) for position P .

• T9: Perform maximizing and minimizing to determine the overall best move.

Shannon first attempted to only use parts T0−T7 to play a game of chess using an algo-
rithm which would choose any legal move at random. As to be expected, this algorithm
performed very poorly and lost nearly every game in roughly four to five moves. This
confirmed Shannon’s theory that a good evaluation function was crucial to the success
of the algorithm. He described his algorithm as follows:

1. List all possible legal moves in the present position using T7.

2. Take the first move off the list and apply it using T0.

3. List all possible legal moves for the opponent in the, by means of (2) obtained,
position.

4. Apply the first and the second possible move in the above list using T0.

5. Evaluate the in (4) resulting positions in T8.

6. Compare the above values and keep only the lower value using T9.

7. Perform steps (3) to (5) until all of the opponent’s moves have been evaluated and
the move yielding the lowest value has been selected.

8. Perform steps (2) to (6) until all of the machine’s moves have been evaluated.

9. Perform the move assigned to the highest value.

6

Jacqueline Wagner
Matriculation number 3390137

University of Heidelberg
Artificial intelligence for games

2.4 Ideas for further improvements

In his paper Shannon discusses some obvious concerns regarding the strategy A algo-
rithm’s performance. He estimated that a machine would take over 16 minutes to perform
a single move. Since Shannon’s goal was to create a machine to match human skill levels
this simply wouldn’t suffice. He also disliked the fact that the machine could only see
three moves deep at any point in time.
His main point of criticism, however, was that the algorithm behaved exactly the same
way in stable positions as it did in unstable positions. He considered an evaluation dur-
ing an exchange or a combination to be completely unnecessary since the follow-up move
would be evident in these types of scenarios. Good human players generally only eval-
uate a limited amount of selected variations until stability is reached. Shannon wanted
his algorithm to be intelligent enough to mimic this human trait.
In order to eliminate these weaknesses he wanted the algorithm to evaluate forceful

variations such as captures, recaptures or checks out as far as possible, while at the same
time giving up unreasonable positions fairly early. Shannon also saw the need for an
additional function which would specify whether the game was in a stable or unstable
position. He would use this function to make sure the evaluation function is only applied
in relatively stable board positions.

7

Jacqueline Wagner
Matriculation number 3390137

University of Heidelberg
Artificial intelligence for games

3 A more advanced selective search strategy

3.1 Shannon’s Type B strategy

Taking the previously discussed problems into consideration, Shannon came up with a
type B strategy. This strategy was equipped with a function g(P) used to determine
whether stability exists in a position P or not, e.g. g(P) = 0 if a piece is attacked by
a piece of lower value. Shannon wanted his algorithm to explore any variation at least
two moves deep. If after two moves g(P) = 1, he designed his algorithm to continue
exploring the variation until either the depth exceeded 10 or g(P) = 0.
Lastly, he defined a function h(P,M) in order to decide whether a move M in a

position P is worth exploring or not. He acknowledged that such a function would be
difficult to construct since it should not eliminate moves which only look bad at first
sight. Shannon, however, believed that sufficient research into the theory of chess would
yield such a function. The plan was for the function to assume high values for forceful
moves such as checks, captures and attacking, medium values for defensive moves and
low values for all other moves. In addition, the requirements on h would be set higher
and higher as the depth of search increased, resulting in fewer and fewer sub-variations
being examined.
Shannon figured that this new strategy would significantly improve computing effi-

ciency and would therefore result in the machine playing a fairly strong game at human
speed. In constructing his algorithm Shannon made sure to make use of the four main
advantages machines have over humans

• Speed – A machine’s ability to perform calculations at a very high speed.

• Freedom from errors – Assuming that the master has made no mistakes in imple-
menting the algorithm, there should be no errors during the execution.

• Freedom from laziness – While humans might make the mistake to pursue an
instinctive move without properly evaluating it, machines have no gut feeling and
will therefore never perform any operation without analyzing it according to the
algorithm.

• Freedom from nerves – Unlike humans, a machine will not resign once it feels it
has lost, nor will it become overconfident if it thinks it has won the game.

While these represent important advantages, Shannon knew that he must weigh his
algorithms abilities against the “flexibility, imagination and inductive learning capacities
of the human mind” [6].

8

Jacqueline Wagner
Matriculation number 3390137

University of Heidelberg
Artificial intelligence for games

3.2 Turing’s strategy

Turing followed a similar approach to that of Shannon’s type B strategy. He wanted his
machine to be capable of deeming certain moves pointless while pursing others quite a
long way down the path. At the bare minimum he wanted his algorithm to follow each
variation for at least two white moves and two black moves before evaluating whether
this has lead to a dead or a considerable position. Turing defined a dead position to
be a position in which “there are no checks, captures or recaptures possible in the next
move” [8] while all other positions are regarded as considerable positions. Once the
algorithm has evaluated to a depth of four, the evaluation only continues if it results in
a considerable position. At the end of such a sequence, Turing’s evaluation function is
applied to determine the value of the position. Identical to Shannon’s strategy, Turing
made use of minimizing opponent’s values and maximizing the machine’s values to back-
propagate the values through the decision tree in order to determine the overall best
move.
Turing’s algorithm calculates the overall value of a position using the value and the

positional value. The value is calculated by assigning relative values to every piece on
the board and summing the values for all pieces. The positional value, however, consists
of a more complex evaluation. Some of the attributes used are listed below:

• Mobility - For Q,R,B,N, add the square root of the number of moves the piece can
make. In addition count each capture as two moves.

• Piece safety - For R,B,N, add 1.0 point if it is defended, add 1.5 points if it is
defended more than once.

• King mobility Do the same as in (1) for the King except for castling moves.

3.3 Problems to consider

Shannon’s described his biggest concern to be the lack of variation in play. Since his
machine would always make the same move in the same position and would therefore
play the same game if the opponent stuck to the same moves, the opponent could make
use of weak positions previously made in the game flow. He suggested to add a statistical
element to the game by choosing at random between multiple moves of similar value.
Both Shannon’s and Turing’s algorithms are incredibly complicated in the opening

stages of the game. Human players tend to choose from a set number of variations
until one of the players deviates from the book. Shannon wanted to implement this by
supplying the machine with a number of standard opening variations saved in the internal

9

Jacqueline Wagner
Matriculation number 3390137

University of Heidelberg
Artificial intelligence for games

memory. His machine would then rely on these stored variations in the beginning stages
of the game instead of calculating the next move in a complicated manner.

10

Jacqueline Wagner
Matriculation number 3390137

University of Heidelberg
Artificial intelligence for games

4 Conclusion

In assessing his algorithm, Shannon mentioned that it is his belief that the machine
would play chess “brilliantly” [6]. However, he admitted that the machine’s greatest
weakness is its inability to learn from previous mistakes.

It plays something like a beginner at chess who has been told some of
the principles and is possessed of tremendous energy and accuracy for
calculation but has no experience with the game.

Claude E. Shannon in Programming Digital Computer to Play Chess,
page 273 [6]

While very advanced for their time, both Shannon’s and Turing’s strategies rely on
brute force calculation rather than logical analysis or even intelligence. Shannon agreed
that a more intelligent self-improving system could be constructed, he however argued
that this would not be a practical approach for the problem of chess.

The computer is strong in speed and accuracy and weak in analytical
ability and recognition. Hence, it should make more use of brutal
calculations than humans.

Claude E. Shannon in Programming Digital Computer to Play Chess,
page 274 [6]

He suggested instead using a higher level program which could alter the terms and
coefficients constructing the evaluation function depending on results of games played
by the machine.
It is important to note that the performance of both Shannon’s and Turing’s algorithm

depends greatly on the selected coefficients and numerical factors used in the evaluation
function. The style of play as well as the strength of the player can be adjusted by
adding, omitting or changing certain terms in the evaluation function. Simply put, the
algorithm is only as good as its evaluation function and therefore only as good as its
masters understanding of chess.

If I were to sum up the weakness of the above system in a few words I
would describe it as a caricature of myself.

Alan Turing in Digital Computers applied to Games, page 9 [8]

11

References

[1] Sameep Bagadia, Pranav Jindal, and Rohit Mundra. “Analyzing Positional Play in Chess
using Machine Learning”. In: 2014.

[2] Casey Chan. “The Rise of Artificial Intelligence Is Absolutely Fascinating”. In: GIZMODO
(Nov. 2013).

[3] Jamie Condliffe. “Watch Garry Kasparov and Alan Turing Play Ches”. In: GIZMODO
(June 2012).

[4] Ioan James. Claude elwood shannon 30 april 1916—24 february 2001. 2009.

[5] Irene Meichsner. “Der Urahn der Nerds”. In: Deutschlandfunk Kultur (June 2012).

[6] Claude E. Shannon. “XXII. Programming a computer for playing chess”. In: The Lon-
don, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 41.314 (1950),
pp. 256–275.

[7] Chris Smith et al. “The history of artificial intelligence”. In: University of Washington
(2006), p. 27.

[8] Alan M Turing. “Digital computers applied to games”. In: Faster than thought (1953).

Statement of originality

This is to certify that to the best of my knowledge, the content of this term paper is
my own work. This term paper has not been submitted for any other purposes.
I certify that the intellectual content of this thesis is the product of my own work and
that all the assistance received in preparing this term paper and sources have been ac-
knowledged.

Jacqueline Wagner, Heidelberg, May 8, 2019

	Introduction
	The brute force search strategy
	Playing a perfect game of chess
	Playing a skillful game of chess
	Shannon's type A strategy
	A simple example
	Necessary hardware
	Constructing an executable program

	Ideas for further improvements

	A more advanced selective search strategy
	Shannon's Type B strategy
	Turing's strategy
	Problems to consider

	Conclusion

