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Chapter 1 Introduction

1 Introduction

1.1 Motivation and Related Work
Deep neural networks are currently the method of choice in machine learning and research

areas that apply machine learning techniques like, for instance, image classification. Neural

Networks achieve very convincing results, however, it is often hard to retrace how the decision

came about. In order to get an insight into the neural network ”black box” classifiers, various

methods have been developed. One way to interpret neural networks is by means of compress-

ing neural networks into simpler models e.g. a decision tree [W. Craven and W. Shavlik, 1999,

Frosst and Hinton, 2017] which is referred to as knowledge distillation or model compression

[Hinton et al., 2015, Bastani et al., 2017]. Other approaches for which [Olah et al., 2017] pro-

vides an overview try to visualize different layers that the network has learned (feature visual-

ization) or depict by sensitivity maps how different parts of the input contribute to the output

(attribution methods).

Xu et al. have recently developed a new method called DarkSight which can provide a visual

interpretation of black-box classifier predictions [Xu et al., 2018]. Closely related to the work

of Xu et al. is the t-distributed stochastic neighbour embedding (t-SNE)

[van der Maaten and Hinton, 2008] when applied to the features from the second to last layer

in a deep classifier. In the following t-SNE is explained in more detail.

1.2 t-SNE
t-SNE is a technique for dimensionality reduction which is very widely used for the visualiza-

tion of high-dimensional datasets, such as high-dimensional prediction vectors obtained by a

complex neural network or another so-called black-box classifier. t-SNE was first introduced

by van der Maaten and Hinton in 2008 [van der Maaten and Hinton, 2008]. The basic idea

is to transform high-dimensional vectors x1, ..., xn into low-dimensional vectors y1, ...yn while

keeping the relative similarity of all instances. The dimensionality of yi is usually desired to be

2 such that Y = {yi} ∈ R2 can easily be visualized by a scatter plot.

As mentioned before, t-SNE wants to keep the similarity between data points, i.e. if two vectors

xi, xj are close together, the lower-dimensional vectors yi, yj should be close as well. Therefore,

van der Maaten and Hinton define conditional probabilities between two data points considering

a Gaussian distribution with given variance σi around each point xi :

pj|i =
exp(

−|xi−xj |2
2σ2

i
)∑

k 6=i exp(
−|xi−xk|2

2σ2
i

)
(1)

The similarity is then defined as a symmetrized version of the conditional probability:

Pij =
pj|i + pi|j

2n
(2)
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Chapter 2 DarkSight

with n being the total amount of data points. Doing this for every pair of data points results

in a matrix P that represents similarities. It is also possible to compute a similar matrix Q

for the low-dimensional counterparts yi, ..., yn, however, the Gaussian distribution is replaced

by a t-student distribution. This is done in order to account for the fact that the distribu-

tion of distances is so different between a high-dimensional space and a low-dimensional space

[van der Maaten and Hinton, 2008]. The similarity qij is thus defined as follows:

qij =
exp(−|yi − yj|2)∑
k 6=i exp(−|yi − yk|2)

(3)

The distance between the two similarity matrices is minimized using stochastic gradient descent

on the Kullback-Leibler divergence between P and Q:

KL(P ||Q) =
∑
i,j

pijlog(
pij
qij)

(4)

The final mapping is obtained when the gradient descent algorithm converges

[van der Maaten and Hinton, 2008]. Figure 1 shows a resulting t-SNE plot for the MNIST

dataset.

Figure 1: t-SNE visualization for the MNIST dataset.
Source: [Xu et al., 2018]

2 DarkSight

2.1 Principle
DarkSight is another recently published approach to visually summarize high-dimensional pre-

dictions of a black-box classifier in a lower-dimensional space (usually 2D). For this purpose,

DarkSight combines model compression techniques with dimension reduction [Xu et al., 2018].

DarkSight is inspired by the concept of dark knowledge which refers to the idea that the

full vector of predicted class probabilities - not just the highest probability - contains im-

plicit knowledge that the classifier has learned. Therefore, consider the two class probability
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Chapter 2 DarkSight

vectors presented in Figure 2: It obviously makes sense that an image with associated proba-

bilities [cat:0.92, dog: 0.06, ...] is somehow different from an image with probabilities

[cat:0.92, car:0.06, ...], since a car and a dog have a quite different appearance. Dark

knowledge like this can be extracted using model compression techniques [Hinton et al., 2015].

Figure 2: Dark Knowledge in vectors of predicted class probabilities.
Source: [Xu et al., 2018]

The DarkSight method expects to be given a trained classifier, called the teacher, as well as

a validation dataset Dv. The teacher outputs a probability distribution PT (c|x) with πi =

PT (ci|xi) being the class probability vector for the data point xi. The goal now is to represent

every data point xi by a low-dimensional embedding yi i.e. to reduce the dimensionality. To do

so, a simple and interpretable student classifier PS(c|y, θ) is trained in the low-dimensional space

such that the student’s predictions match the teacher’s predictions, i.e. PS(ci|yi, θ) ≈ πi∀i. The

training objective L(Y, θ) of the student is defined as the symmetric Kullback-Leibler divergence

between the predictive distributions of teacher and student :

L(Y, θ) =
1

N

N∑
i=1

KLsym(PT (ci|xi), PS(ci|yi; θ)) (5)

The symmetric KL divergence is defined from the unsymmetric version as:

KLsym(P,Q) =
1

2
(KL(P,Q) +KL(Q,P )) (6)

with the KL divergence given as:

KL(P,Q) = −
K∑
k=1

P (k)log(
Q(k)

P (k)
) (7)

As the training objective does only depend on xi via the prediction vectors πi, the embeddings

yi can also be viewed as a lower-dimensional representation of πi. The representations and the

student classifier are trained end-to-end using stochastic gradient descent (SGD). This means

that the student classifier’s parameters θ and the inputs Y = {yi} to the student classifier

are optimized simultaneously [Xu et al., 2018]. Figure 3 summarizes the DarkSight approach

visually.
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Chapter 3 DarkSight

Figure 3: Schema of the DarkSight approach.

2.2 Choice of the Student Model

There exist different possibilities of how to define the student classifier. Xu et al. decided to

use a very simple model namely the Naive Bayes classifier:

PS(ci = k)|yi; θ) =
P (yi|ci = k; θc)P (ci = k; θp)

P (yi|θ)
(8)

P (yi|ci = k; θc) can either be modelled by a Gaussian or a Student’ t-distribution. Xu and his

colleges decided for the latter due to the same reason as mentioned in section 1.2.

The prior P (ci = k; θp) over the classes is described by a categorical distribution [Xu et al., 2018].

2.3 Confidence Measure

As a by-effect DarkSight allows for the definition of a new confidence measure. Intuitively, a

full prediction vector which is unusual compared to all others, should not be trusted. This is

measured quantitatively by density estimation in the space of the prediction vectors, however,

this is computationally quite expensive. Xu et al. thus propose to perform kernel density

estimation on the DarkSight embeddings Y = {yi}. This yields an estimate p̂KDE(yi) that

can be used as confidence measure for the teacher’s prediction xi. Commonly the predictive

entropy

H(PT (ci|xi) =
∑
k

= p(ci = k|xi)logp(ci = k|xi) (9)

is used to describe how reliable a prediction is, i.e. how possible it is that the teacher might

have failed on classifying this data point. However, the predictive entropy does not take Dark

Knowledge into account as it is invariant towards relabeling of classes. For instance, the predic-

tion vectors [cat:0.92, dog: 0.06, ...] and [cat:0.92, airplane: 0.06, ...] have

the same predictive entropy, while the corresponding p̂KDE(yi) will differ. The latter is what

we expect, as we should have more trust in the first prediction vector, because a cat is more

similar to a dog than to an airplane [Xu et al., 2018].
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Chapter 4 Design Principles

3 Design Principles
Xu et al. specified four properties, that low-dimensional embeddings like DarkSight and t-SNE

should satisfy in order to provide a reliable basis for the interpretation of a classifier’s results

[Xu et al., 2018]

• Cluster Preservation: Points in the low-dimensional space are clustered according to

the predicted class label. Additionally, the prediction confidence is highest in the cluster

centers and monotonically decreases towards the cluster borders.

• Global Fidelity: The relative position of clusters towards each other has a meaning.

From this follows that nearby clusters get confused more likely by the classifier than

clusters which are located far away from each other.

• Outlier Identification: Data points with unusual predicted probability vectors are

easily identifiable in the low-dimensional space as they are outliers.

• Local Fidelity: Points which are close to each other in the low-dimensional space are

assigned similar probability vectors.

4 Experiments and Evaluation of Results

4.1 Experimental Setup

Xu et al. applied DarkSight to the predictions of three different teacher classifiers each trained

on one dataset. Table 1 provides an overview, as well as the test accuracies of the teacher

classifiers on the respective dataset.

Table 1: Overview of Teacher classifier, the datasets they were trained on and accuracy
achieved.

Classifier Dataset Accuracy on Dataset (%)

LeNet MNIST 98.23

VGG16 Cifar10 94.01

LeNet Cifar100 79.23

After verifying that the model compression works well [Xu et al., 2018], DarkSight was evalu-

ated with respect to the four design principles (see section 3) and compared to the respective

results of t-SNE. Thereby Xu and his colleges considered three different approaches, each of

which applies t-SNE to different inputs:

• t-SNE prob uses the original predictive probability vectors.

• t-SNE logit uses logits of the predictive probablity vectors, i.e. the output of the last

layer before applying the softmax.
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Chapter 4 Experiments and Evaluation of Results

• t-SNE fc2 uses the final feature representations of the input, i.e. the output of the layer

before logit.

4.2 Cluster Preservation

For a good cluster preservation we expect points close to the cluster center to have a higher confi-

dence than points at the cluster border. Figure 4 shows scatter plots generated by DarkSight/t-

SNE for predictions of LeNet on MNIST. The points are coloured by their confidence, which

was here measured as the predictive entropy (see formula 9). Although the DarkSight clusters

are quite small, one can observe that points with higher confidence are mostly located near the

cluster center, whereas this can not be observed for the t-SNE visualizations.

Figure 4: Scatterplots generated from DarkSight/t-SNE embeddings for predictions of LeNet
on MNIST. Points are coloured by predictive entropy, with darker points having large
values.

Source: [Xu et al., 2018]

From the concept of cluster preservation also follows that data from points between two clusters

should be similar to both classes. Figure 5 shows the DarkSight plot of VGG16 predictions

on the Cifar10 dataset. One can see that several clusters are directly adjacent along a curve.

The points in the black box of Figure 5 form a transition of the bird class to the airplane class.

In Figure 6 c) the predictive probabilities of the points within the black box are visualized

and it can be seen that the values of the two top probabilities (bird and airplane) smoothly

interchange with each other along the curve. Corresponding points for the t-SNE prob and t-

SNE logit visualization are marked in Figure 6 a) and b) and show that such transition between

two classes are hardly visible in t-SNE plots [Xu et al., 2018]. However, for a fair comparison

one should have also taken adjacent points from a t-SNE plot and examine the values of the

probability vectors in the same way as it was done for DarkSight.
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Chapter 4 Experiments and Evaluation of Results

Figure 5: DarkSight visualization of
VGG16 on Cifar10
Source: [Xu et al., 2018]

Figure 6: Interpretation of points in the
black box of Figure 5
Source: [Xu et al., 2018]

Some images along the transition from plane to bird obtained from the online demo at http:

//xuk.ai/darksight/demo/cifar.html are shown in Figure 7 highlighting that at least in

this case the decisions of the network are quite understandable for a human.

Figure 7: Real images from the transition within the black box of Figure 5 obtained from
http://xuk.ai/darksight/demo/cifar.html.

4.3 Global Fidelity

If the principle of global fidelity is met, the global position of clusters in the low-dimensional

space, i.e. in the DarkSight visualization, should be meaningful. By observing the confusion

matrix Xu et al. could prove that nearby classes are often - but not always - confused by the

classifier. This observation holds for DarkSight as well as t-SNE plots.

Referring to Figure 5 the DarkSight visualization provides a nicely interpretable global pattern:

whereas all animal classes are located at the lower right, the remaining classes of vehicles can

be found in the upper left corner. The two groups are only connected by the transition between

birds and airplanes, which makes sense as these are semantically similar [Xu et al., 2018].
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Chapter 4 Experiments and Evaluation of Results

4.4 Outlier Identification

Furthermore, Xu et al. examined whether kernel density estimation on DarkSight embeddings

(see section 2.3) is a suitable measure for the reliability of predictions and can thus be used as

a confidence measure.

In general, a confidence measure is effective if the classifier is more accurate on predictions with

high confidence and less accurate on predictions with low confidence. Thus, Xu and his colleges

conducted the following experiment: first, they ran density estimation on DarkSight embeddings

and t-SNE embeddings as well as - for comparison - in the original space of prediction vectors.

For the latter, KDE and Dirichlet mixture estimation (DME) was employed. Then, the classifier

was applied again on the validation dataset and performance was measured. However, this time

the classifier was allowed to reject a point when confidence was below a predefined threshold

δ, that is making a (possibly wrong) prediction without paying a penalty in accuracy. Figure

8 shows the prediction accuracy plotted against the proportion of data points the classifier

was forced to make a prediction on (i.e. points with confidence ≤ δ). When the classifier is

forced to make a prediction for all data points (proportion of data used is 100%) a decrease

in accuracy due to low confidence points - more precisely points with confidence below δ - is

expected. When not forced to predict for the total amount of data, the classifier should reject

all the low-confidence points and thus not expose a decrease in accuracy. To summarize, the

curves should be close to the upper right corner of the plot.

This expectation is met by KDE on DarkSight embeddings for MNIST as well as Cifar10.

KDE outperforms all other confidence measures based on low-dimensional embeddings and is

comparable to DME on the original probability space. This supports the statement of the

authors that density estimation on DarkSight embeddings can serve as a reliable confidence

measure. In the application this means that “outlier detection can be done by simply picking

instances on the corner of the scatter plot” [Xu et al., 2018], as these relate to points with low

confidence and thus the classifier may have failed on. Two random outlier examples together

with their prediction vectors are presented in Figure 9 and 10 proving that outliers may indeed

be instances which are quite hard to classify.

For the Cifar10 dataset KDE produces even better results than DME, which led the authors

to the conclusion that DarkSight is possibly able to capture information which can not be

captured by DME [Xu et al., 2018].
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Chapter 4 Experiments and Evaluation of Results

Figure 8: Accuracy-data plot for MNIST and Cifar10. KDE = Kernel Density Estimation,
GME = Gaussian Mixture Estimation, DME = Dirichlet Mixture Estimation.

Source: [Xu et al., 2018]

Figure 9: Real image outlier of the
car cluster. Obtained from
http://xuk.ai/darksight/

demo/cifar.html.

Figure 10: Real image outlier of the
dog cluster. Obtained from
http://xuk.ai/darksight/

demo/cifar.html.
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Chapter 4 Experiments and Evaluation of Results

4.5 Local Fidelity

In order to evaluate the local fidelity performance, Xu and colleges defined the following metric:

Mk(Y ) =
1

N

N∑
i=1

1

k

∑
j∈NNk(yi)

JSD(pi, pj) (10)

where pi denotes the student classifier’s prediction, JSD is the Jensen-Shannon distance, and

NNk(yi) is the set of k nearest neighbours to yi in the visualization.

Figure 11 shows the results of Mk(Y ) on MNIST as function of the number of neighbours k.

Since t-SNE is specifically optimized for local fidelity it naturally performs best in this task.

Yet it is interesting that only t-SNE prob performs that good, whereas t-SNE logit and t-SNE

fc2 produce rather bad results. This indicates that the t-SNE visualization depends on the

quantities which are visualized. Whereas t-SNE logit and t-SNE fc2 process data from earlier

layers of the network (i.e. layers with low-level features), t-SNE prob processes data from the

last layer (with high-level features, containing more discriminative information). DarkSight

can compete with t-SNE prob for higher k, however not for smaller k. The authors propose

that this might be the case because the objective of DarkSight does globally rather than locally

match the teacher ’s with the student ’s probability distribution [Xu et al., 2018].

Figure 11: Local fidelity performance of t-SNE prob, t-SNE logit, t-SNE fc2 and DarkSight
visualized as plot of average Jenson-Shannon distance (JSD) vs. the number of
neighbours k.

Source: [Xu et al., 2018]

4.6 Case Study

In Figure 12 one can see a DarkSight visualization for LeNet on MNIST on which the design

principles are satisfied and can be illustrated very well. Cluster preservation is visible as points

from the cluster center (e.g. case 1.a. and 1.b) look very typical for the class whereas points

at the border (e.g. case 1.c and 1.d) look more unusual and thus have lower confidence. Also,

points at the transition of two classes look similar to both of them (compare Cases 2.a to 2.d).

Global Fidelity is insofar fulfilled as nearby classes might get confused more easily as e.g. 3
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Chapter 5 Discussion

and 8 or 4 and 9. Outliers (e.g. case 4.a, 4.b, 4.c) can be spotted as points far away from all

clusters [Xu et al., 2018]. However, one has to keep in mind that it is not possible to capture

all information of many dimensions in just two dimensions and especially it is hard to visualize

all multi-dimensional relations in two dimensions. For example, π1c = [9 : 0.52, 0 : 0.44, ...] is

expected to be located between cluster 5 and cluster 0, instead it can be found at the right

border of the figure.

Figure 12: LeNet on MNIST. Data are coloured according to the predicted label.
Source: [Xu et al., 2018]

5 Discussion
With DarkSight, Xu et al. proposed a theoretically well comprehensible approach that converts

predictions of a complex classifier into an easily interpretable visualization. They achieved this

using a combination of model compression and dimension reduction. For evaluation of Dark-

Sight they mainly focused on four properties, namely cluster preservation, global fidelity, outlier

identification and local fidelity. Results in each category were compared with the outcome of

the widely used t-SNE method.

Cluster preservation and Global Fidelity were mainly evaluated in a qualitative way with focus

on specific examples. Therefore, one can not assume that similarly good results are produced

for every classifier and dataset. Also, as mentioned in section 4.2, comparison with t-SNE

could have been improved in some places. Apart from that, DarkSight offers an interesting and

convincing way of presenting black-box classifier results in an understandable way from which

one can draw further conclusions. Especially Figure 5 is very nicely interpretable. Therefore,

when faced with such an issue I would personally try DarkSight as well as t-SNE and derive

hypotheses from the combination of both.
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