Flexible Data Collection

How do I lie with flexible data collection?

Lennart Stipulkowski

Seminar: "How do I lie with statistics?" Supervisor: Prof. Dr. Ulrich Köthe

November 14, 2019 Heidelberg University

Source: https://xkcd.com/1478/

Table of contents

- 1. The Problem
- 2. HARKing
- 3. "How Bad Can It Be?" Simulations
- 4. Analyzing P-Hacking (Approach 1)
- 5. Analyzing P-Hacking (Approach 2)
- 6. Solutions

Quote

A reader quick, keen, and leery Did wonder, ponder, and query When results clean and tight Fit predictions just right If the data preceded the theory

- Anonymous

The Problem

Problem

- Main Problem: False-Postive rate
 - $\cdot\,$ Author finds evidence for an effect that does not exist
 - Incorrect rejection of the null hypothesis
- Few revocations of false-positive findings \rightarrow persist in literature
- Field/Scientists/Journal loses credibility if exposed
- It is unusual to publish null findings
 - Incentive to publish findings with high level of "significance"

Problem

- Despite stated significance of $p < .05 \rightarrow$ higher false-positive rates are likely
 - Reason: Influence of data collection and analysis

Problem - Researchers Degrees of Freedom

Researchers Degrees of Freedom

- Amount of data to be collected
- Exclusion of observations
- $\cdot\,$ Selection of combined conditions and which one to compare
- Which control variables?
- Combining measures
- Transforming measures

Question is: Should/Could one do the decisions before data acquisition/analysis?

- Accepted and common practice to not decide beforehand
- Different alternatives are tested and optimised for the highest "statistically significance"
- $\cdot\,$ Its likely one alternative leads to false positive findings $\geq .05\,$

Ambiguity of these decisions

- Intention of the researcher to have the maximum statistical significance
- Ambiguous analytic questions → appropriate decisions are those with statistical significance (convincing self-justification)

Example: How to treat outliers?

Given a study measuring the reaction times of students.

- Researchers have to make a decision: How to treat the outliers (fast/slow reaction times)
- They often tend to decide in favor of high significance
- No common standard to comparable studies $\rightarrow\,$ problem of reproducibility

Example: How to treat outliers?

HARKing

HARKing

Hypothesizing After the Results are Known (HARK) vs. Hypothetico-deductive (HD)

Hypothetico-deductive (HD)

• Deductive reasoning based on hypotheses prior the research

Hypothesizing After the Results are Known (HARK)

- Presenting post hoc hypothesis after the results are known
- Presenting like a priori hypothesis

Categorizing Hypotheses

	After Results Are Known	
Before the Study	Plausible	Implausible
Anticipated & Plausible	a	b
Anticipated & Implausible	С	d
Unanticipated	е	f

Table 1: Cross-Classification of Hypotheses by A Priori and Post Hoc Status[Kerr et al., 1998]

• The HD approach is classified as a or b

"How Bad Can It Be?" Simulations

"How Bad Can It Be?" Simulations [Simmons et al., 2011]

- $\cdot\,$ Simulations of the common researcher degrees of freedom
- Four common degrees:
 - (a) choosing among dependent variables
 - (b) choosing sample size
 - (c) using covariates
 - (d) reporting subsets of experimental conditions
- According to a survey: 70% of asked behavioural scientists admitted a flexible sample size
 - Belief of a trivial influence on false-positive rate

"How Bad Can It Be?" Simulations - Degrees

A: Two dependent variables (r=0.5)

- Variable 1
- Variable 2
- Average. Variable 1 + 2

 \rightarrow one of three tests below significance level (T-Tests)

B: Addition of observations

- 20 Observations
- \rightarrow test for significance
 - 10 Observations
- → test for significance

"How Bad Can It Be?" Simulations - Degrees

C: Controlling for gender or interaction of gender with treatment

- Each observation a gender is assigned
- → test for significance
 - ANCOVA (analysis of covariance) to "reduce" the effect of the gender on analyzed effect
- → test for significance

D: Dropping (or not dropping) one of three conditions → test for significance

dropping one of the three conditions

 \rightarrow test for significance (repeat for each condition dropped)

"How Bad Can It Be?" Simulations - Results

Simulation: Continuously adding observations

Lennart Stipulkowski

Figure 1: Continuously adding observation

"How Bad Can It Be?" Simulations - Results

Lennart Stipulkowski

Analyzing P-Hacking (Approach 1)

P-Curve

P-Curve

Distribution of p-values of a given set of studies

- It can be used to determine the effects of p-hacking
- Mainly the effects of:
 - Selection bias / "file drawer effect"
 - Inflation bias / "p-hacking"

Figure 2: XKCD: https://xkcd.com/882/

Lennart Stipulkowski

Figure 2: XKCD: https://xkcd.com/882/

Lennart Stipulkowski

Figure 2: XKCD: https://xkcd.com/882/

Figure 2: XKCD: https://xkcd.com/882/

P-Curve: Publication bias

Figure 3: Publication bias / No evidental value [Head et al., 2015]

Figure 4: Publication bias / Evidental value > 0 [Head et al., 2015]

Figure 5: XKCD: https://xkcd.com/1478/

P-Curve: P-Hacking

Figure 6: P-hacking / No evidental value [Head et al., 2015]

Figure 7: P-hacking / Evidental value > 0 [Head et al., 2015]

Analyzing P-Hacking (Approach 2)

Example Scenario [Shun-Shin and Francis, 2013]

Figure 8: Pulse oxymetry¹

- Student nurse is about to document a oxygen saturation by pulse oximetry of 85%
- Patient is ambulant, looking pink and feeling well
- All previous values $\geq 97\%$

Do you:

- a) Immeadiately confine to bed, initiate 100% oxygen
- b) Document 85% and request tests for possible pulmonary emobolism
- c) Remeasure the oxygen saturation yourself, document the new value

¹ Source: Royal College of Nursing, URL:

http://rcnhca.org.uk/clinical-skills/observation/oxygen-levels/, November 9, 2019

Effects of Remeasurement, Removal, Reclassification

D'Agostino z-score

$$z \leftarrow \begin{cases} \frac{g(y) - g(x)}{\sqrt{2}} \text{ if } \bar{x} \le \bar{y} \\ \frac{g(x) - g(y)}{\sqrt{2}} \text{ if } \bar{x} \ge \bar{y} \end{cases}$$

Figure 9: A tadpole

Figure 11: Manipulation of the distribution [Shun-Shin and Francis, 2013]

Reaching Significance by Remeasurement, Removal, Reclassification

Figure 12: Effects of remeasurement, removal, reclassification on significance [Shun-Shin and Francis, 2013] **Figure 13:** Effects of remeasurement, removal, reclassification on significance [Shun-Shin and Francis, 2013]

Lennart Stipulkowski

Solutions

Solutions - Rules for the Authors

According to Simmons et. al. [Simmons et al., 2011]

- 1. Rule for terminating data collection prior collecting
- 2. Enough observations per cell
- 3. List all variables collected
- 4. Report all experimental conditions (e.g. failed manipulations)
- 5. Report the statistical results if no observations would be excluded
- 6. If analysis includes covariate → report of the results without covariate

Solutions - Rules for the Reviewers

According to Simmons et. al. [Simmons et al., 2011]

- 1. Author should follow the authors requirements
- 2. Tolerance of imperfections in results
- 3. Require authors to report their analytic decisions
- 4. If justification of data-collection or analysis are not compelling
 - \rightarrow require authors to conduct exact replication

Registered Reports (Center for Open Science - cos.io)

- Currently used by 210 journals (2019)
- \cdot \rightarrow Peer-review before results are known

Figure 14: Registered Reports process¹

¹Source: Center for Open Science, URL: https://cos.io/rr/, November 10, 2019

Registered Reports (Center for Open Science - cos.io)

Figure 15: Registered Reports ²

²Source: Center for Open Science, URL: https://cos.io/rr/, November 10, 2019

References i

- - Head, M. L., Holman, L., Lanfear, R., Kahn, A. T., and Jennions, M. D. (2015).

The Extent and Consequences of P-Hacking in Science. *PLoS Biology*, 13(3).

- Kerr, N. L., Adamopoulos, S., Fuller, T., Greenwald, S., Kiesler, P., Laughlin, D., and Mcglynn, A. (1998).
 HARKing: Hypothesizing After the Results are Known. Technical Report 3.

Shun-Shin, M. J. and Francis, D. P. (2013).
Why Even More Clinical Research Studies May Be False: Effect of Asymmetrical Handling of Clinically Unexpected Values.
PLOS ONE, 8(6).

References ii

Simmons, J. P., Nelson, L. D., and Simonsohn, U. (2011). False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant.

Psychological Science, 22(11):1359–1366.

Flexible Data Collection

How do I lie with flexible data collection?

Lennart Stipulkowski

Seminar: "How do I lie with statistics?" Supervisor: Prof. Dr. Ulrich Köthe

November 14, 2019 Heidelberg University

Source: https://xkcd.com/1478/