
Report on DeepStack
Expert-Level Artificial Intelligence in Heads-Up No-Limit Poker

Lasse Becker-Czarnetzki
czarnetzki@cl.uni-heidelberg.de

Abstract
This report focuses on the Paper ”DeepStack: Expert-Level Artificial Intel-
ligence in No-Limit Poker” [5]. The goal of this report is to convey the
necessary knowledge to understand DeepStack and the methods used by
DeepStack. The creation of overly redundant information for anyone who
read the DeepStack paper is kept at a minimum, while detailed explanations
are expanded on those parts of DeepStack that are not clearly explained in
the paper itself. This includes needed background information and in par-
ticular a more detailed explanation of Counterfactual Regret Minimization,
which is an underlying algorithm that is used by DeepStack.

Contents
1 Introduction/Need to knows 2

1.1 Imperfect vs Perfect information games 2
1.2 HUNL Texas Holdem . 2
1.3 Abstraction . 3
1.4 Heuristic search for imperfect information games 4

2 Counterfactual Regret Minimization 4
2.1 Regret Matching . 4
2.2 CFR . 5

3 DeepStack 9
3.1 Continual re-solving . 9
3.2 Deep Counterfactual Neural Networks . 10
3.3 Sparse look-ahead trees . 10

4 Evaluation 11
4.1 DeepStack vs Human Pros . 11
4.2 Exploitability of DeepStack . 12

5 Discussion 13
5.1 DeepStack vs Libratus . 13
5.2 Conclusion . 13

6 References 14

1

1 Introduction/Need to knows
1.1 Imperfect vs Perfect information games
In research for artificial intelligence (AI) a lot of focus was and is put on developing
systems to play games. the reason for this is that we see games as smaller observable
and controllable version of the real world. Researchers develop AI to play games, to
create methods and learn things about AI that could than be transferred to a real life
setting. But if we look at perfect information games this assumption of analogy to the
real world seems a little stretched. If we take chess as an example, for every board
position you and your opponent have symmetric and complete information, what’s more
every move that came before to arrive at the current position does not matter for the
current decisions. These are circumstances that are not present in real life decisions. In
fact our information about the world or our believes about a ”opponent” or their believes
are incomplete and asymmetrical. At the same time it might be important to reason
about how i got to a certain point to make a sound decision.
This is the reason why we want to develop AI for imperfect information games. They
give us more inside in how AI could work in a real life setting. For that reason poker is a
highly interesting game for AI research. It involves thinking about things your opponent
might think about you if you act a certain way, it involves bluffing and reasoning about
past actions. It seems to be the closest game to reality we can use for researching the
reality in AI.

1.2 HUNL Texas Holdem
I won’t explain the whole of poker here but i want to give some points to make this
Report understandable and show why we talk about poker.
In our case we play the game called Heads-Up-No-Limit (HUNL) Texas Holdem. This
means we play a two player zero-sum game of poker with the texas holdem rules. No-
Limit means that there are no limits to the sizing of bets. A player can bet the minimum
up to the players full stack size. These bets are wagers on who of the two players is
holding the better cards. The two players get dealt two cards each and only each player
gets to see their own hold cards. This way both players have asymmetric information
about the game, they don’t know what cards the opponent is holding. The game consists
of up to 4 betting rounds. The players act in alternating fashion. A player can choose to
bet or to check, which means to bet nothing. If a player is faced with a bet he can choose
the meet it by putting the same amount of money in the middle or choose to give up
(fold). The other option is to meet the faced bet with a even higher one. After the first
betting round 3 public cards are revealed, which can make combinations with the players
private cards. After each of the two following betting rounds another public card gets
revealed. A game reaches a terminal state, if a player folds or if the 4. betting round is
finished. If that happens the private cards are revealed and the player whose cards form
a better combination with the public cards wins. To give an incentive to play more than
the best hands at the start of every round minimum bets (blinds) have to be wagered
by each player. The game consists of two players who try to maximize their winnings
by tricking the other player into thinking they have bad cards when they don’t, so they
get payed off after the 4. betting round, and good cards if they have bad ones, to make
them fold and give up their made bets. The players make these actions by reasoning

2

about believes and the history of actions, because they don’t have perfect information.
The game is also influenced by chance due to the randomness of the cards that are dealt.
If in poker somebody talks about a players range, they mean the probability distribution
over a players possible actions with there possible hold cards. This knowledge is very
helpful if one wants to reason about a players action and the cards the player is most
likely holding, if he chooses that action. See Figure 1 for a visualization of a poker game
tree showing the public states. It shows player 1 and 2 action nodes. The green nodes
are chane nodes.

Figure 1: Poker public game tree [5]

1.3 Abstraction
Abstraction is a widely used concept, especially in poker research previous to DeepStack
that one must know to dive in to the world of poker AI.
The basic goal of abstraction is to reduce the complexity of a search tree of a game
by simplifying it. This smaller game tree than gets solved by some heuristic search
algorithm. To use this solved simplified version of the game tree one than translates the
actual game states and actions to the one closest in the abstraction and the corresponding
strategy is used.
In case of poker there are two main forms of abstraction. By using action abstraction
the number of bet sizes that are considered in the game tree get decreased. For example
only bet sizes incremented by 50 are used. If the AI than is faced with a bet size not
present in the game tree a translation/rounding of that bet size is necessary. This can
result in possible strategies of exploitation by choosing specific bet sizes that result in a
large inaccuracies through the translation or confuse the AI and general rounding errors.

3

The other form of abstraction is card abstraction. For this method pairs of cards that
are similar get clustered together and treated the same way. This way far less card
combinations have to be considered.

1.4 Heuristic search for imperfect information games
To adapt a heuristic search like method to imperfect information games, DeepStack over-
comes 2 main problems.
The most significant difference in imperfect information games for solving a particular
sub-game is that you can’t forget the history of actions that resulted in the current state.
The history plays an important role in the decision making progress. DeepStacks core
game solving method is Continual re-solving (see section with Counterfactual Regret
Minimization (see section 2). While using this method DeepStack keeps track of the
believes of which cards the players are holding, which is the concluded information what
one would get when thinking about the action history. For a detailed description see
section 3.1.
The other big issue is the use of a suitable evaluation function. Heuristic search methods
are not able to solve super large games such as poker with over 10160 decision points. To
combat this only a depth-limited search is done, and if that limit is reached a evaluation
function gives an estimate of the utility of the current state, which can be used. In the
case of an imperfect information game like poker it is not possible to just evaluate one
state with one utility value. We don’t have a defined state because of the imperfect infor-
mation circumstances and one public state (State that is definable through all publicly
available information) can’t simply be evaluated through by looking at it’s state infor-
mation. The reason is that there are many ways that that public state can be reached
(different action histories) and to evaluate a set of possible states accurately one needs
to reason about believes again. To learn such a complex evaluation DeepStack uses deep
neural networks. For details see section 3.2.

2 Counterfactual Regret Minimization
To understand DeepStack one has to understand the underlying solving algorithm. For
this reason i give an introduction to CFR in this section. Counterfactual Regret Min-
imization is a Algorithm that minimizes the overall regret for actions in a sequential
game, a game where a sequence of actions from players is needed to reach a terminal
state. By doing so we can compute a Nash Equilibrium strategy for that game or at least
a close approximation. CFR was first developed by Zinkevich et al. [8] To understand
the underlying algorithm one must first understand the concept of regret and how to
compute it and how to derive a strategy from that same regret. For that reasons i first
present the concept of regret matching in a simple normal form game before i explain
how CFR can be used for Poker.

2.1 Regret Matching
In 2000 Hart and Mas-Colell [4] introduced a game theory algorithm that reaches equi-
librium play by choosing actions proportional to positive regrets. They called it regret
matching. First i need to establish the meaning of the word regret. The easiest way to

4

do this is by a simple example. Most commonly one chooses the zero-sum, normal-form
game Rock-Paper-Scissors here and so will i. So imagine two players choosing one of
three actions (R, P, S) at the same time and betting 1$ on the outcome. If both players
choose the same action, they tie otherwise rock(R) beat scissorx, scissors(S) beats paper
and paper(P) beats rock. If player 1 chooses paper(P) and player 2 chooses scissors(S),
player 1 loses 1$ and player 2 gains 1$. A typical strategy optimizing algorithm would
take this utility of -1$ player 1 received and handle it in some way. Regret matching
doesn’t do this but opens the perspective instead. We ask what could we have gotten if
we were to choose another action at that moment.
Player 2 chose scissrs(S) so if we would have chosen rock(R) instead we would have
gained 1$ and not lost 1$.
The utility for choosing paper(P) when player 2 chooses scissors(S) is
u(paper, scissors) = −1
The utility for choosing rock(R) when player 2 chooses scissors(S) is
u(rock, scissors) = 1
To get our regret for not choosing the action rock(R) we compute the difference in the
utility we would have gotten versus the utility we actually got.
We regret not having played rock(R)
u(rock, scissors)− (paper, scissors) = +1− (−1) = 2
The same way we can compute our regret for not choosing scissors.
We regret not having played scissors(S)
u(scissors, scissors)− (paper, scissors) = 0− (−1) = 1
because tying would still have been better than losing 1$. Now we know how to compute
regrets. After one iteration of playing where we randomly choose paper(R) and player
2 chooses scissors(S) our regrets for the actions (R, P, S) would be (2, 0, 1).
W«e can’t compute regret for the action we actually took so the regret for that action
is 0.
Now we can derive a strategy for RPS to use in the next playing iteration. We choose
our actions proportional to our positive regrets. We do this by simply taking our positive
regrets and normalizing them by dividing them with the sum of the total regrets in our
game state. Therefore our resulting strategy after this first step would be (23 , 0,

1
3) In the

next iteration we do the same thing and choose our actions according to the probabilities
of our mixed strategy. The resulting regrets get added up to our existing regret values
and normalized again. IF all regrets are negative we fall back to a random strategy.
If we do this procedure in self play, meaning the active player get switched after every
iteration and their strategy update according to the described method, we converge to an
equilibrium. In RPSes case the resulting Nash equilibrium strategy would be (13 ,

1
3 ,

1
3).

2.2 CFR
If we want to use this method of regret matching on a sequential game such as poker we
have to make a few additions to the algorithm. We have to not only consider the actions
of the two players, but also chance actions (the public cards). We also have to model
the fact that a player does not know in which game state he is, due to the incomplete
information. If we create a game tree where each node is either a decision node or a
chance node, the decision nodes edges are the probabilities of a player choosing an action
resulting in another node or terminal state, the edges of a chance node the probabilities

5

of a chance action occurring, we model nodes that are not distinguishable by the player
in information sets. A players strategy for all nodes in an information set is thereby the
same. To get a grasp of the algorithm i will now define notation in a similar manner to
[6].
Let A denote the set of all game actions (For example: Fold, Bet x amount,...). Let I
denote an information set, and A(I) denote the set of legal actions in that information
set I. Let t and T denote time steps. t is always in regard to a specific information
set and gets incremented every time that information set is visited. A strategy σt

i maps
probabilities to a player i choosing a, a ∈ A(Ii) in an Information set Ii at time t for
every information set. All strategies together create a strategy profile σt. This includes
a player 1 , a player 2 and a chance player c whose strategies are just the probabilities of
the chance actions occurring in a chance node. If we want to reference a strategy profile
that excludes player i’s strategy, we denote σ−i. If we want to say that using a particular
strategy is equivalent to σ with the exception that at a particular information set I always
action a is chosen we denote σI→a. To define states we use a history h which is a sequence
of actions (including chance) starting from the root of the game. The probability to reach
a history h with a strategy profile σ is defined as πσ(I). Logically the probability to
reach a information set I is the sum of the probabilities to reach all histories that are
in that information set πσ(I) = Σh∈Iπ

σ(h). The counterfactual reach probability of an
information set I, πσ

−1(I), is the probability of reaching this information set I with the
strategy profile σ except we only take the probabilities of the chance actions and the
actions of the other player into account by setting the probabilities of player is actions
to reach this information set to 1. By doing this we get the probability of getting to
an information set if player i purposely wants to get to that information set. Those are
the situations i refer to as counterfactual. I denote Z as the set of all terminal game
histories (All sequences of actions that end in a terminal state). I denote a nonterminal
game history that is the proper prefix of a terminal one (in other words the game history
that precedes a terminal game history) as hz for z ∈ Z Finally let ui(z) be the utility to
player i for the terminal game history z define the counterfactual value at non-terminal
history h as:

vi(σ, h) =
∑

z∈Z,hz
πσ−i(h)πσ(h, z)ui(z) (1)

Now we can define the counterfactual regret analogous to regret matching above
The counterfactual regret of not taking action a at history h is defined as:

r(h, a) = vi(σI→a, h)− vi(σ, h) (2)

Following that the counterfactual regret of not taking an action a at information set
I is defined as:

r(I, a) =
∑
h∈I

r(h, a) (3)

6

Now let rti(I, a) be the reference for the regret of player i of not taking action a at
information set I, if players use strategy σt. Than the cumulative regret is defined as:

RT
i (I, a) =

T∑
t=1

rti(i, a) (4)

The regret can be understood as the difference between the exspected value for al-
ways choosing action a and using the strategy σ. This is weighted by the probability to
reach the node in which the action is taken only using the probabilities of the opponent
playing to that node and the chance actions getting to it. We want to get a strategy
proportional to our positive counterfactual regrets. Therefore we define the nonnega-
tive counterfactual regret RT,+

i (i, a) = max(RT
i (i, a), 0). Now we can apply the regret

matching method to compute the new strategy as follows:

σT+1
i (i, a) =

RT,+

i (I,a)∑
a∈A(I) R

T,+
i (i,a)

if
∑

a∈A(I)R
T,+
i (i, a) > 0

1
|A(I)| otherwise

(5)

This equation is used to compute to compute the action probabilities in each informa-
tion set proportional to the positive cumulative regrets. Again we fall back to a random
strategy, if the regrets are negative. In Algorithm 1 the complete algorithm is shown
with chance sampling. The algorithm has 5 parameters. The history of actions h, the
currently learning player i, the time step t and the reach probabilities for both players
1 and 2 σ1, σ2.
Some additional information is needed to fully understand the algorithm. All variables
that start with a v are local variables and are not computed by any above mentioned
equations. The σc strategy is the already mentioned chance player strategy. P (h) just
stands for the active player after any history h. ha denotes a history that is identical
to history h after action a is taken in that history h. ∅ just defines a empty history.
One detail to keep in mind is that not the final strategy profile that is achieved after a
number of iterations converges to an equilibrium but the average strategy for an infor-
mation set I, σ̄T converges to a Nash equilibrium as T → ∞. This algorithm now can
be used to compute a strategy for poker. Every possible states for a public state, that a
player could be in, if all cards that the players could be holding are considered, are put
in information sets. The thinking of believes over which cards the players are holding
is modeled through the probability weighting of the players strategy to reach this infor-
mation set with certain cards. This way a approximate Nash equilibrium strategy for
poker.
DeepStack uses a variation of this vanilla version of CFR (see 3.1).

7

Source: Neller and Lanctot [6]

3 DeepStack
3.1 Continual re-solving
The center of DeepStack is the mechanism of Continual re-solving. The basic concept is
that DeepStack solves the currently existing sub-game online if the AI has to act. If i say
solve i mean a approximated Nash equilibrium strategy is computed via a depth-limited
search. Also only a set amount of time is used to make the thinking time comparable to
a human if not faster in a lot of cases. To make this feasible depth and breadth limiting
methods are applied to the search tree. The search can be done depth-limited because
of the evaluation function the Deep Counterfactual neural networks provide (see 3.2).
In addition the breadth of the search space gets limited by action abstraction. For de-
tails see 3.3.
CFR like it is explained above applies for solving a whole game tree. Continual re-solving
needs to solve sub-game trees without having to solve the preceeding game trunk. A
expansion of CFR called CFR-D [2] makes this possible. To be able to solve a particular
sub-game continual resolving needs three things, The public state, the players range
at that public state, and the opponents counterfactual values. With this information
a strategy for the remainder of the game can be reconstructed. Re-solving just means
that we don’t keep our strategy for the whole game, but rather compute a best strategy
in every situation. Since we use CFR as our solver the opponents counterfactual values
can easily be taken from that and our range can easily be computed using the player
strategy profile. There are three possible action scenarios, where we have to update or
information vectors to represent our current game state.
(1) After our own action the current strategy can be disregarded. The opponents coun-
terfactual values are set to those computed in the re-solve resulting from our action.
Our range can easily be updated by using Bayes’ rule on the previous strategy and the
currently computed one.
(2) A chance action occurs: The opponents counterfactual values get updated in the
same way by using the new computed values for the re-solve after the chance. For our
range hands that are no longer possible just get assigned the probability zero.
(3) Our opponent takes an action: No update is required. This is a very central design
point in DeepStack which allows the AI to react exactly to an opponents action. No
translation is necessary. DeepStack doesn’t face that weaknesses that action abstraction
on the opponents bets can bring mentioned in 1.3
To implement this continual resolving DeepStack uses a variation of the vanilla CFR,
how it is often called, that is described above. In particular uses a technique known as
CFR+ which uses a more efficient version of regret-matching called regret-matching+.
The main difference in effect being the efficiency and ability to solve a larger game. For
details refer to Tammelin [7].
The biggest issues with vanilla CFR however is that it can only function properly when
it is used on a complete game tree. This is why CFR-D [2] is used. A extension of the
algorithm that uses decomposition to make solving of a sub-game with CFR possible.
This version of CFR uses augmented information sets that also include possible parent
nodes. To make solving of a sub-game theoretically sound. In Burch, Johanson, and
Bowling [2] and more explicitly in Moravcı́k et al. [5] it is shown that by using the in-
formation, that we update in continual re-solving (Our players range and the opponents
counterfactual values), we can still compute a sound and Nash equilibrium approximat-

9

ing strategy with CFR for a sub-game. For details on the CFR-D, decomposition and
the augmented information sets refer to Burch, Johanson, and Bowling [2]. CFR-D also
requires that the counterfactual values of our opponent, that we keep in our information
vector, are an upper bound of the value the opponent can achieve with each hand in the
current public state. At the same time they can’t be larger than the value the opponent
could have achieved, if they deviated from reaching the current public state. The heart
of the solver remains the same as in Vanilla CFR.

3.2 Deep Counterfactual Neural Networks
The second big component that allows DeepStack to use a heuristic search like method
are the Deep Counterfactual Neural networks. To avoid redundancy i will not describe
these networks in great detail, and the way they are trained and used as they are de-
scribed clearly and in great detail in the DeepStack paper [5].
The main challenge that these networks overcome is that a public state, that a depth-
limited search arrives in, can’t be evaluated by some pre-computed value. In re-solving
these public states will be reached in many different ways with many different player
ranges and counterfactual values. To solve this these networks, which are trained on
millions of randomly created poker situations, get the information vectors used in con-
tinual re-solving (players range and opponents counterfactual values) and the pot and
stack sizes as well as the public cards to define the public state as input. They output
counterfactual value vectors for each player which intuitively value each pair of cards a
player could be holding. This way a good evaluation of the public state, that is reached
in a particular re-solve iteration, can be given to the CFR algorithm. For the input
of card information DeepStack uses some card abstraction (see section 1.3. Using this
method the search complexity of HUNL can be decreased from 10160 to 1017. Training
these networks offline and especially creating the random poker situations is by far the
most computational taxing part of DeepStack. See Figure 2 for an architecture overview
of the deep neural nets used for the counterfactual value networks.

3.3 Sparse look-ahead trees
To lessen the breadth of the search tree DeepStack uses action abstraction to limit the
amount of bet sizes to consider immensely. It shows to be sufficient to only use a limited
amount of bet sizes, only 2-4 different ones, to make the computation much less complex
and a lot faster, while having enough options for a good strategy, so that it is applicable
for real time matches.

10

Figure 2: Counterfactual Value Network architecture [5]

4 Evaluation
In this section i want to quickly show the evaluation results of DeepStack. I also want to
avoid redundancy here so i refer everyone to Moravcı́k et al. [5] for a detailed description
of DeepStacks evaluation. DeepStack used two variations of evaluation. The played a
number of games against pro poker players to see if they can beat them with statiscal
significane. They also created a method of measuring the exploitability of DeepStack.

4.1 DeepStack vs Human Pros
The main problem for evaluating against human players is that the chance factor in
poker makes it very difficult to clearly see if one player is better than the other through
a small number off games. In fact one needs to play up to 100.000 matches to see if
one player is better than the other with statistical significance. This creates a problem
because it is not feasible to pay pro poker for that number of games or give them some
other incentive. The team behind DeepStack therefore created a method for reducing
the variance in the result of a poker game. The method is called AIVAT. The basic idea
of AIVAT is not to evaluate the results of a poker game by the amount of money that was
exchanged, but by the value DeepStack could have gotten in expectation. The difference
between this expectation and the actual result can be used to lower the variance. The
practical thing about this is that this expectation in a given poker situation can be
computed by DeepStacks Counterfactual Value networks (3.2). For any terminal state
of a poker match we know DeepStacks range and thereby can get an expected value in
the given situation. The variance that arises in the outcome can be reduced by taking

11

the difference between the expected value and the actual outcome. In the same way
AIVAT can reduce variance at every chance action. The differences in expected values
before and after a chance action are not in the players or opponents control, so they can
be discarded as variance. These are some examples on how AIVAT can achieve variance
reduction on poker, for a more detailed description refer to Burch et al. [3].
By using AIVAT the number of games that have to be played to measure a result
with statistical significance is reduced to 3000. They let pros play these 3000 games
against DeepStack giving an incentive by rewarding the 10 best performing. In the
poker community a measurement for a player exists called mbb/g (milli big blinds per
game). It basically is a normalized value to measure the winnings of a player over a
span of multiple games. A poker pros aims to get 50 mbb/g consistantly to turn a profit.
Always folding would result in -750 mbb/g. To make it quick, DeepStack successfully
beat the contestants with statistical signifcance. The results can be seen in Figure 3

Figure 3: DeepStacks performance against human pro poker players [5]

One detail that can be criticized in this experiment is that they did choose poker pros
to player against, but not experts in HUNL. Poker is usually played in a multiplayer
fashion up to 10 players. The heads-up variant requires specific skills and understanding
of the game at the highest level, which some of the participants might not possess but
experts in HUNL might.

4.2 Exploitability of DeepStack
In game theory exploitability is a measurement that checks a strategy’s difference to
a Nash equilibrium strategy. The best response to a strategy would result in a tie of
one is playing in a Nash equilibrium. The amount of losses that are created different

12

to that tie is the exploitability of a strategy that only approximates a Nash equilibrium.
Because no-limit poker is to complex no best respone strategy can be computed. The
authors of DeepStack try to approximate a best response by looking at DeepStacks
action probabilities in a poker situation and creating a local best response. In terms of
results they can only show that this method can’t exploit DeepStack. This shows that
EeepStack has achieved a not trivial approximation of a Nash equilibrium strategy but
since it is still an approximation the method of local best response seemst not sufficient
enough to properly measure true exploitability but it makes it possible to compare to
other AI systems. They show that earlier Poker AIs lose to a local best respone strategy
but comparisons to other sota systems such as Libratus is not available.

5 Discussion
5.1 DeepStack vs Libratus
Almost at the same time as DeepStack a different independently developed HUNL Poker
AI was developed. It is called Libratus [1] and most notably it also makes use of CFR
and a similar technique to continues Re-solving. Libratus beat HUNL Poker Pros with
statistical significance and also beat other previously released top Poker AIs.Notably the
played against experts in HUNL unlike DeepStack It was never shown if DeepStack was
able to beat previous Poker AIs 1v1 or even Libratus itself. To give a wider view on
different attempts to solve the problem of HUNL Poker i want to call out some differences
between Libratus and DeepStack.
Libratus does have more additional features. For example it can account for possible
mistakes the opponent made in previous actions. DeepStake always assumes equally good
play. Libratus acts in the first two betting rounds according to a pre-computed blueprint
strategy. Like discussed above, DeepStack doesn’t have the problem of abstracting
the opponents action because it computes a real time response specific to that action.
Libratus on the other hand needs to round the opponents bet to a bet that is on the
known game tree of the blueprint strategy. Libratus combatants this problem by using
a self improvement module, which considers the seen bet sizes of the opponent and adds
problematic ones to the game tree. Unlike DeepStack Libratus doesn’t use any Deep
Learning method. A big practical difference to consider is that DeepStack can run on a
simple GPU at test time, while Libratus does need a lot more computing power.

5.2 Conclusion
DeepStack is a HUNL Poker AI that successfully beats human professionals with statis-
tical significance in the game. DeepStack shows that the adaption of methods used in
AI for perfect information is possible and usefull.
The fact that DeepStack is breaking into the super human level of play for a popular
game such as poker and that the AI can technically be run on a simple personal laptop
raises an issue for the online poker community. Since further findings in this line of
research in the next years are to be expected and recreating such an AI without needing
a lot of resources seems now more possible than ever, gambling sites need to be aware
of the possible misuse of such an AI. But even if DeepStack is closer than Equilibrium
strategy than professional players, it seems unlikely that the use of such a strategy is
more profitable than those of the pros yet. Since humans aren’t perfect and especially

13

amateurs won’t be playing game theory optimal, the strategies of the professionals to
exploit these mistakes, might still be superior in the sense off accumulating profit. Nev-
ertheless achieves DeepStack a big step in AI research and imperfect information games
in general since no to domain specific learning was used and methods like continual
re-solving could get transferred to other areas.

6 References
[1] Noam Brown and Tuomas Sandholm. “Libratus: The Superhuman AI for No-Limit

Poker”. In: Proceedings of the Twenty-Sixth International Joint Conference on Ar-
tificial Intelligence, IJCAI-17. 2017, pp. 5226–5228. doi: 10.24963/ijcai.2017/772.
url: https://doi.org/10.24963/ijcai.2017/772.

[2] Neil Burch, Michael Johanson, and Michael Bowling. “Solving Imperfect Informa-
tion Games Using Decomposition”. In: Proceedings of the Twenty-Eighth AAAI
Conference on Artificial Intelligence. AAAI’14. Québec City, Québec,
Canada: AAAI Press, 2014, pp. 602–608. url: http://dl.acm.org/citation.cfm?id=
2893873.2893967.

[3] Neil Burch et al. “AIVAT: A New Variance Reduction Technique for Agent Eval-
uation in Imperfect Information Games”. In: CoRR abs/1612.06915 (2016). arXiv:
1612.06915. url: http://arxiv.org/abs/1612.06915.

[4] Sergiu Hart and Andreu Mas-Colell. “A Simple Adaptive Procedure Leading to
Correlated Equilibrium”. In: Econometrica 68.5 (2000), pp. 1127–1150. doi: 10 .
1111/1468-0262.00153. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/
1468-0262.00153. url: https://onlinelibrary.wiley.com/doi/abs/10.1111/1468-
0262.00153.

[5] Matej Moravcı́k et al. “DeepStack: Expert-Level Artificial Intelligence in No-Limit
Poker”. In: CoRR abs/1701.01724 (2017). arXiv: 1701.01724. url: http://arxiv.
org/abs/1701.01724.

[6] Todd W. Neller and Marc Lanctot. “An Introduction to Counterfactual Regret
Minimization”. In: 2013.

[7] Oskari Tammelin. “Solving Large Imperfect Information Games Using CFR+”. In:
(July 2014).

[8] Martin Zinkevich et al. “Regret Minimization in Games with Incomplete Informa-
tion”. In: Proceedings of the 20th International Conference on Neural Information
Processing Systems. NIPS’07. Vancouver, British Columbia, Canada: Curran Asso-
ciates Inc., 2007, pp. 1729–1736. isbn: 978-1-60560-352-0. url: http://dl.acm.org/
citation.cfm?id=2981562.2981779.

14

https://doi.org/10.24963/ijcai.2017/772
https://doi.org/10.24963/ijcai.2017/772
http://dl.acm.org/citation.cfm?id=2893873.2893967
http://dl.acm.org/citation.cfm?id=2893873.2893967
http://arxiv.org/abs/1612.06915
http://arxiv.org/abs/1612.06915
https://doi.org/10.1111/1468-0262.00153
https://doi.org/10.1111/1468-0262.00153
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1468-0262.00153
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1468-0262.00153
https://onlinelibrary.wiley.com/doi/abs/10.1111/1468-0262.00153
https://onlinelibrary.wiley.com/doi/abs/10.1111/1468-0262.00153
http://arxiv.org/abs/1701.01724
http://arxiv.org/abs/1701.01724
http://arxiv.org/abs/1701.01724
http://dl.acm.org/citation.cfm?id=2981562.2981779
http://dl.acm.org/citation.cfm?id=2981562.2981779

	Introduction/Need to knows
	Imperfect vs Perfect information games
	HUNL Texas Holdem
	Abstraction
	Heuristic search for imperfect information games

	Counterfactual Regret Minimization
	Regret Matching
	CFR

	DeepStack
	Continual re-solving
	Deep Counterfactual Neural Networks
	Sparse look-ahead trees

	Evaluation
	DeepStack vs Human Pros
	Exploitability of DeepStack

	Discussion
	DeepStack vs Libratus
	Conclusion

	References

