
Artificial Intelligence for Games (2019)
Prof. Dr. Köthe

Training robots with machine learning:
Juggling & Throwing

Seminar report by

Stephen Schaumann

Submitted on July 15, 2019

Abstract

This report looks at the paper “Robot Juggling: An Implementation of
Memory-based Learning” by Stefan Schaal and Christopher G. Atkeson [1],
released 1994, describing their realization of a robot learning the task of jug-
gling via machine learning. Basic concepts and techniques used in the paper
will be introduced. At the end there will be also be a short summary of
the more recent paper “TossingBot: Learning to Throw Arbitrary Objects
with Residual Physics” by A. Zeng, S. Song, J. Lee, A. Rodriguez, and T.
Funkhouser [2], in which they show how a robot arm can learn to throw
objects by combining physical models and machine learning.

Contents

1 Introduction 3
1.1 Training robots with machine learning 3
1.2 A general description of robot-tasks 3
1.3 Selecting a suited model . 4

2 Robot juggling with memory-based learning (1994) 5
2.1 Locally Weighted Regression 5
2.2 Shifting Setpoint Exploration Algorithm 6
2.3 Devil sticking . 8

2.3.1 Task overview . 8
2.3.2 Results . 10

3 TossingBot (2019) 13
3.1 Task and approach overview 14
3.2 Results . 15

4 Conclusion 16

Bibliography 17

2

Chapter 1

Introduction

1.1 Training robots with machine learning
Robots are a highly valuable asset with many useful applications. Training
robots using machine learning to improve their efficiency and range of skills is
obviously quite desirable, but has been a hard problem for many years now.
Unlike many digital applications of machine learning, robots are confined
in the physical world with all it’s limitations. Executing trial runs takes
much, much slower compared to digital tasks. Resetting a setup is also not
trivial, often consuming a lot of time, while being essential for many learning
methods. Decisions also have to be made fast enough. For example, a self-
driving car can’t take a couple of seconds to decide whether it is about to
run over a pedestrian.
Despite being hard to achieve, the gain from teaching robots via machine
learning is big enough that several methods have evolved during the last
decades. We will take a closer look at two of them in the following sections.

1.2 A general description of robot-tasks
The general form of a problem for a robot to solve is the following:

• Some input is given to the robot from the environment, either continu-
ally or in discrete time steps. This will most likely come from a camera
or some kind of sensor (or a combination of multiple sources)

• Based on the received input, the robot issues one or several commands.
This could be signals to turn a motor into a certain position, throt-
tle/iincrease some thrust, etc.

• The commands issued should lead towards the goal. This can be simple,
direct goal, but more often it can be very vague. Defining the goal of
the robot can be a challenging task in itself.

3

1.3 Selecting a suited model
Often, when a robot learns a task, it has to gain some understanding of the
world it operates in. This can be in the form of a machine learning model
that, after training for a while, can predict the outcome of actions following
some input state. Machine learning offers many possible ways to approach
this. We can broadly divide them into two types of models: parametric and
non-parametric models.
A parametric model is a mathematical function with a finite set of free pa-
rameters. It fits a global function, meaning this one function is fitted to the
whole input-space. Data collected during training is not kept. All informa-
tion is contained in the free parameters, which are fitted during training.
Examples for this kind of model are Linear regression and Neural networks.
On the other hand there are non-parametric models. They have a potentially
unlimited set of free parameters. This means that during training the pa-
rameters can not only be improved, but also extended by new ones. Unlike
a global function fit, a local function fitting does not try to approximate the
whole space at once. Instead, it depends on the location one is looking at.
These methods can remember data gathered during training. Examples are
(N-)Nearest Neighbor and Kernel Regression.
Remembering past data can be advantageous, as no information can be lost.
The downside is that this will get more resource-intensive as the training
progresses, as more and more space is needed to save the data. A program
has to run fast enough with a lot of data and also needs to learn fast enough
before too much data is gathered for it to be actually useful.

4

Chapter 2

Robot juggling with memory-based
learning (1994)

2.1 Locally Weighted Regression
The main method introduced in [1] is the Locally Weighted Regression (LWR).
It is non-parametric and memory-based. By using previous data it estimates
a local linear model for a point at lookup. It offers various statistical tools to
assess the reliability of lookups, optimize the quality of lookup, and handle
noise and corrupted data.

Classic (unweighted) regression works by finding the solution β to the equa-
tions y = Xβ, where X is a m×(n+1) matrix containing m data points with
n input dimensions, respectively, and y is a vector holding the corresponding
result/output for the entries in X. In practice, this is done by solving the
equation XTXβ = XTy. To get a prediction for a query point xq one then
simply inserts it to get ŷq = xTq β.
A problem in this is that each point is equally weighted. This means that for
the query result a point in close proximity has as much influence as a point
far off. When we are only interested in the prediction at xq, we would like to
give similar points more importance. Therefore, the influence of the points
gets weighted by distance.

This leads to the LWR. For each stored data point i we calculate the squared
distance to the query point: d2i =

∑n
j=1 sj

(
Xij − xqj

)2. Each entry is then
weighted by wi = f (d2i), with some weighting function f . A simple choice
would be to use wi = 1

dki
. While this choice would succeed in giving close

points more importance, when the distance goes towards zero the weight will
go towards infinity. This would cause the LWR to exactly replicate the stored
data point, which is undesired since the data is noisy. A better choice, which
is also chosen in the paper, is wi = exp

(
−d2i
2k2

)
. Here, k scales the kernel size,

5

giving a control on how local the model should be.
Each row in X and y is then multiplied by the corresponding weight wi be-
fore doing the regression. Additionally, they used Ridge Regression for better
noise handling. Ridge Regression extends the classic regression with a diag-
onal matrix Λ with small positive entries. The equations to solve are then(
XTX + Λ

)
β = XTy, with X and y already weighted by distance.

A comparison of LWR to other common non-parametric function approxi-
mation techniques can be seen in Figure 2.1

Figure 2.1: Comparison of LWR to other non-parametric function approximation
techniques. Taken from [1]

2.2 Shifting Setpoint Exploration Algorithm
To gain understanding about the world, the robot needs to explore the avail-
able space. This will collect data points, which will be used for further
predictions. The problem with this is: the input space is usually very high-
dimensional and the collected data is sparse. More inputs to the robot offer
more information, but also increase the space that needs to be explored.
Since the robot’s speed is limited by the real world, it can only collect data
slowly, making the progress even harder. It may also not be safe to explore
all possible regions, or very costly (e.g. when the robot is damaged). For
example, a self-driving car shouldn’t need to run over pedestrians to learn
how to stay on the road. Thus, random search is not a feasible option.

For this matter the authors introduce the Shifting Setpoint Exploration Algo-
rithm (SSA). The idea is to approach exploration slow and steady, building
up understanding in a region before shifting focus somewhere else. The task
is broken down into two parts:

6

• Fast timescale: The system is kept under control at certain fixed points.
These may not be the optimal solution at first

• Slow timescale: The fixed setpoints are slowly shifted towards the ac-
tual goal

By exploring around the fixed setpoints, the robot ensures confidence in that
region. By shifting the setpoints towards the goal, the robot always knows
what it’s doing in the current region, learning along the way.
They then explain the algorithm in more detail using a simple example, a
car driving along a mountain road (see Figure 2.2).

The task is to drive the car at a constant horizontal speed ẋdesired (in this case
0.8m/s) from left to right, while minimizing fuel consumption. Interaction
takes place at discrete time steps with 5Hz. There is noisy feedback of the
position x and speed ẋ of the car (in the following written as x, containing
both position and speed). In return, the thrust F can be controlled.
SSA is initialized by executing the following steps:

1. Start at a random location (which is kept fixed)

2. Execute a few random trials

3. Search for the point with highest confidence (determined via prediction
intervals. See [1]) and declare it as setpoint:(
xTS,in, FS, x

T
S,out

)T
4. Try to reach the setpoint from each new trial

To try to reach the setpoint they used a LQ-controller (Linear-quadratic
regulator) which utilizes predictions from the LWR. After the initialization,
the following steps are executed continuously:

1. Learn to reach the setpoint until a certain confidence (based on pre-
diction intervals) is reached. This means starting always at the same
point and trying to reach the setpoint, based on experiences so far

2. Take the derivative of xdesired − xS,out w.r.t. the command FS

3. Calculate the correction ∆FS and update the setpoint-thrust:
FS = FS − ∆FS

Calculate new setpoint by applying the updated thrust to the old set-
point.

7

4. Assess the fit at the updated setpoint. If the confidence is already high
enough, terminate. Otherwise continue with step 1

The results can be seen in Figure 2.3. As can be seen, the car only explored a
(mostly) connected region, and only where it is necessary. Inside the explored
regions, data is quite dense, giving confident control.

Figure 2.2: Overview of the example problem to showcase the SSA. The goal is
for the car to drive with a constant horizontal speed to the right while minimizing
fuel consumption. Taken from [1]

Figure 2.3: Results for the car-example using SSA. On the left is the explored
region in phase space, on the right the explored thrust depending on the location.
Taken from [1]

2.3 Devil sticking
2.3.1 Task overview
The main goal of this paper was for a robot to learn how to juggle. Slightly
misleading, what is actually meant is so-called Devil sticking. Devil sticking

8

has the person (or robot) holding two sticks, with the goal to throw a third
stick back and forth between the two. An overview of this can be seen in
Figure 2.4.
Controllable by the robot are three motors, which are shown by τ1, τ2, τ3 in
the diagram. For this paper they did not use the motor τ3. The devil stick
itself is mounted on a boom, causing it to move on the surface of a circle.
Since the radius is big enough compared to the region of interest, it moves
approximately on a plane.

A state vector of the task is a vector x =
(
p, θ, ẋ, ẏ, θ̇

)T
. It corresponds

to the impact state of the devil stick with a hand stick’s nominal position.
The nominal position is an arbitrary, fixed position for the hand stick. In
this case, the normal upright positions as seen in 2.4 are used as nominal
positions. The components of the state vector are:

• p : Distance of the devil stick’s center of mass to the impact point with
nominal position

• θ: Angle of the devil stick at impact

• ẋ, ẏ: Horizontal and vertical speed of the devil stick at impact

• θ̇: Angular velocity at impact

After the stick is thrown, the impact with the other hand is estimated from
the trajectory. This uses information from the boom holding the devil stick
and classical trajectory equations. The estimated impact is then given as
input to the other hand, which then computes what action to take. Both
sticks act independently, learning only for themselves.

Commands are issued in the form of a vector u =
(
xh, yh, θ̇t, vx, vy

)T
. xh

and yh define the displacement of the hand stick from it’s nominal position
at the end of it’s movement. The center stick angular velocity threshold θ̇t
controls when the movement of the hand stick should start. Lastly, vx and
vy give the speed at which the hand should move.
Each throw generates an experience vector

(
xTk , u

T
k , x

T
k+1

)T , containing the
state vector before and after the throw, as well as the performed action.

9

Figure 2.4: Schematic overview of (a) Devil sticking and (b) the setup used to
implement it. The possible movements of the robot are shown by τ1, τ2, τ3. Both
hand sticks are dampened, so that the stick does not bounce off them, but needs
to be actively thrown. Taken from [1]

2.3.2 Results
Training the juggling robot worked similarly to the car-example from the
previous chapter. A simplified visualization of the gathered experiences can
be seen in Figure 2.5.

(a) Initially, the robot starts with some random throws. As is to expect,
the stick does not end up in the initial position after the second hand
throws it back. There is only sparse data in a small region.

(b) The robot continues with the “bad” throws, but gathers more experience
in the corresponding regions. It’s not at the goal, but in the region
where it operates, it knows what it’s doing

(c) When confidence is high enough, the setpoints shift to match each
other. The robot explores the new region, extending it’s previous
knowledge.

10

(d) Both setpoints match each other: the target of one setpoint is the
starting position of the other and vice versa. At this point, the juggling
becomes continuous.

Figure 2.5: Simplified visualization of gathered experiences in phase space durin
juggling training. The model reinforces knowledge in a region before moving the
setpoints towards each other. Over time, via the SSA, the setpoints match up and
the juggling is continuous. Taken from [1]

The learning curves for different runs can be seen in Figure 2.6.
First they tested the approach in a simulation. For most of the training, the
robot only makes a couple of hits per trial. This makes sense, since it builds
up it’s confidence in the region it randomly started at. Shortly after 40 trials
the setpoints have reached each other, meaning the robot can succesfully
throw the stick to a position the other hand knows. When this point in
training is reached, the robot suddenly performs hundreds of hits per trial.
The simulation was quickly stopped after this, since it always reached the
maximum limit of 200 hits from there on.
Then a real robot was trained on the task. The start is again completely flat,
with hardly any hits. But there is no sudden change when the robot masters
the task. The authors claim this is due to too sparse data. When the robot

11

knows how to reach a certain state, it repeats exactly the same steps. If there
is a slight change, it does not know how to react appropriately. The result
is therefore not stable.
To fix this they added some small noise to the commands issued by the
robot. This lead to more exploration (though still confined to a small region),
which made the robot’s actions more stable. The resulting curve looks almost
exactly like in the simulation, seemingly mastering the task suddenly after
only a few trials more.

Figure 2.6: Learning curves of the devil-sticking robot when using a (a) Simulation
(b) Real robot (c) Real robot with small random noise added to commands. Taken
from [1]

12

Chapter 3

TossingBot (2019)

This section will give a brief overview over the work shown in [2].
TossingBot consists of a robot arm which is tasked to grab and throw arbi-
trary objects. As can be seen in Figure 3.1, this is a challenging task, since
it heavily depends on the shape of the object and where it is grabbed. Pre-
vious work mostly focused on fixed shapes. TossingBot on the other hand
generalizes to new objects it has never seen before. They do this by using
an approach they call Residual Physics, which combines known Physics and
machine learning.
To simplify the task, the robot arm does not actually learn the whole throw.
Instead, the authors set a fixed throwing angle of 45◦ upwards, pointing
towards the target. Only the release velocity needs to be found.

Figure 3.1: Flight trajectories of objects thrown with same force and direction.
The trajectories massively change depending on the object shape and where it was
grabbed. Taken from [2]

13

3.1 Task and approach overview
TossingBot’s task is made up of two subtasks: grasping and throwing. First
it has to grab an object out of a box with many possible items. Then it has
to throw this object into one of multiple boxes.
The input is given in the form of a RGB-D picture from an overhead camera
and the position of the target box in real world coordinates. Using the
target position and a Physics-based Controller which implements a classical
trajectory calculation, a throwing velocity is calculated. Instead of doing
everything, the machine learning model only tries to find a correction for
this physical prediction. This combination of Physics and machine learning
is what the authors call Residual Physics.
To incorporate the possible rotations of the robot gripper, the image is given
in 16 increasingly rotated orientations. The images are first fed through a
7-layer fully convolutional residual network (FCN ResNet) that includes two
layers of 2 × 2 max-pooling to reduce the image size. This is called the
Perception Module. From the Perception Module the information is passed
on to both the Grasping Module and Throwing Module. Additionally, the
Throwing Module is also given the calculated throwing velocity prediction.
Both modules consist of a FCN ResNet with two upsampling layers, resulting
in a picture with the same size as the initial input.
The Grasping Module returns a map with scores that indicate how good
a grasp could be performed at this location and angle that covers the 16
rotations of the camera picture. Similarly, the Throwing Module also returns
a map, corresponding to the throwing release velocity that should be used
when a grasp is attempted at this location. The system chooses the grasp
with the highest score and then throws it with the corresponding correction
from the Throwing Module.

Figure 3.2: Overview of TossingBot’s task and structure for solving. Taken from
[2]

14

3.2 Results
TossingBot showed to be able to learn very succesful. As can be seen in
Figure 3.3, TossingBot (listed as Residual-physics) outperforms both it’s sin-
gle components, namely the Physics-only and the pure Regression approach.
When it grasped an unseen object succesfully, it even outperformed humans
at throwing (although humans could probably increase their accuracy with
some practice). Throwing generalizes well to unseen objects, getting almost
the same accuracy. In this subtask it greatly outperforms the other methods.
Grasping is a bit worse, going from 86.9% grasping success on seen objects
to 73.2% on unseen objects. Here, all methods perform similarly.

Figure 3.3: (Left) Performance of TossingBot on seen and unseen objects. (Right)
Learning curves of different methods. Taken from [2]

15

Chapter 4

Conclusion

Teaching robots how to learn certain tasks has been a challenge for a long
time, constrained additionally by physical limitations compared to purely
digital machine learning. Over the years, various methods have emerged to
tackle this problem with different strategies.
The first paper, released in 1994, showed a succesful approach using Locally
weighted regression. Already at such early years, the method proved succesful
to train a robot to perform devil-stick juggling. It still has it’s limitations:
the memory-based method gatheres more and more data during training.
More data increases the lookup-time, limiting how much the robot can be
trained before it gets too slow.
A more modern approach was shown with TossingBot, which uses Deep
Learning in a hybrid method called Residual Physics. This combination
of classical physics and machine learning proved to be more succesful than
both of it’s parts alone to train a robot arm to pick up arbitrary objects
and throw them to certain locations. Perhaps this kind of hybrid model will
be picked up more in the future, as it seems a promising approach to uti-
lize modern machine learning techniques in an effective way, together with
theoretical physical knowledge.

16

Bibliography

[1] Stefan Schaal and Christopher G. Atkeson. Robot juggling: Implemen-
tation of memory-based learning. Control Systems, IEEE, 14:57 – 71, 03
1994. doi: 10.1109/37.257895.

[2] Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez, and
Thomas A. Funkhouser. Tossingbot: Learning to throw arbitrary ob-
jects with residual physics. CoRR, abs/1903.11239, 2019. URL http:
//arxiv.org/abs/1903.11239.

17

