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Motivation – Why we study interpretable units?

2012: AlexNet
5 conv. layers

Error: 15.3%

2014: VGG
16 conv. layers

Error: 8.5%

2015: GoogLeNet
22 conv. layers

Error: 7.8%

2016: ResNet
>100 conv. layers

Error: 4.4%Explainable Machine Learning - SS18 - Network Dissection - Pingchuan Ma 3



Motivation – Why we study interpretable units?

Fig.1
by Matt Scherer

1. High performance but black 
boxes lack interpretability

2. Human want to understand 
things, especially those tools 
that we count on

3. Interpretable units hint that deep 
network may not be completely black 
boxes
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Motivation – Previous and related work

Zeiler et al., ECCV 2014.

Deconvolution

Girshick et al., CVPR 2014

Top activated images

Simonyan et al., ICLR 2015 
workshop, 2014

Back-propagation

Inceptionism. Google Blog. June 2015Explainable Machine Learning - SS18 - Network Dissection - Pingchuan Ma 5



Definition – Disentangled representation
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1. CNNs may be learning  spontaneously the 
disentangled representation, which aligns its 
variables with a meaningful factorization of the 
underlying problem structure.  

2. Partly disentangled for economical use of 
hidden variables. 

Fig.2
Early artificial neural network,

at the Cornell Aeronautical Laboratory 
in Buffalo, New York

3. To detect those disentangled structure and 
simply read out the separated factors



Definition – Network Dissection, a tool kit
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Dissection Report
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*The report is the 5 conv layer from a 
ALexNet trained on Places



Definition – Steps to Quantify Interpretability 
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Step 1. Identify a broad set of human-labeled visual concepts. (Broden Dataset)

Step 2. Gather hidden variables' response to known concepts. (Distribution of 
individual unit activation beyond a certain threshold)

Step 3. Quantify alignment of hidden variable-concept pairs. (Calculate the IoU of 
them) Single hidden units in network and single concepts in Broden
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Step 1: Dataset – Broden
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Broadly and Densely Labeled
Dataset, namely Broden, unifies 
several densely labeled datasets. 

Purpose: to provide a ground truth 
set of exemplars of visual concepts, 
which are normalized and cleaned.

Total = 63,305 images
1,197 visual concepts
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Not misspell



Step 2: Method – Distribution of Activation
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*Interpretation: lamp

*Interpretation: car

*Score: 0.15

*Score: 0.02

Top Activated Images

Unit 1

Unit 4

Top Activated Images

Pre-trained model
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Step 3: Method – IoU
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Lamp             Intersection over Union (IoU)= 0.12 

Unit 1               Top activated images
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Method – Scoring Unit Interpretability
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Single unit 𝒌 in CNNImages from Broden Top activated images 
segmented by feature map

Pixel-wise segmented 
images with concepts’ 𝒄 label

1. Calculate the 𝐼𝑜𝑈𝑘,𝑐 data-
set-wide for every pair of 
𝒌, 𝒄

2. If 𝐼𝑜𝑈𝑘,𝑐 exceeds a 
threshold, we consider unit 
𝒌 as a concept 𝒄 detector.

12



Experiments – Recap
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Experiments – Recap
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… Now We are good to go!



Experiments – Structure
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Steps: 

1. Human evaluation

2. Axis-independent

3. Layer levels

4. Architectures  and supervisions

5. Training conditions

6. Discrimination vs. Interpretability

7. Layer Width vs. Interpretability

8. Fine-tuning

*Baseline Model: AlexNet trained on Places205



Experiments – 1. Human evaluation
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Evaluation: Amazon Mechanical Turk (AMT)

Method: Rater are shown images patches and are asked yes/no



Experiments – 2. Axis-independent
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Two Hypothesis:
1. The overall level of interpretability 

should not be affected by a change 
in rotation.

2. The overall level of interpretability 
is expected to drop under this 
change.

Method:
Apply random changes 𝑄 in basis to a 
representation 𝑓(𝑥) learned by 
AlexNet, compare unique detectors

Unique detectors in conv5 layer 
of Baseline AlexNet

Unique detectors in 𝑸𝒇 𝒙 is much fewer than in 𝒇(𝒙)

However each rotated representation has exactly the 
same discriminative power as the original one.



Experiments – 2. Axis-independent
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Two Hypothesis:
1. The overall level of interpretability 

should not be affected by a change 
in rotation.

2. The overall level of interpretability 
is expected to drop under this 
change.

Method:
Apply random changes 𝑄 in basis to a 
representation 𝑓(𝑥) learned by 
AlexNet, compare unique detectors

Unique detectors in conv5 layer 
of Baseline AlexNet

Unique detectors in 𝑸𝒇 𝒙 is much fewer than in 𝒇(𝒙)

However each rotated representation has exactly the 
same discriminative power as the original one.

Conclusion:
The interpretability of CNNs is not an axis-independent property, and it 
is neither an inevitable/ necessary result of the discriminative power 
of a representation, nor is a prerequisite to discriminative power. 

Instead, the interpretability is more likely to be a different quality from 
discriminative power that must be measured separately to be 
understood.



Experiments – 3. Layer levels
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Experiments – 4. Architectures  and supervisions
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The unique detectors in last conv layer of each Networks

1. Interpretability of ResNet > VGPlaces205 G > GoogLeNet > AlexNet, 
and in terms of primary training tasks, we find Places365 > > ImageNet.

2. Interpretability varies widely under a range of self-supervised tasks, 
and none approaches interpretability from supervision by ImageNet or 
Places.



Experiments – 4. Architectures  and supervisions
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The unique detectors in last conv layer of each Networks

1. Interpretability of ResNet > VGPlaces205 G > GoogLeNet > AlexNet, 
and in terms of primary training tasks, we find Places365 > > ImageNet.

2. Interpretability varies widely under a range of self-supervised tasks, 
and none approaches interpretability from supervision by ImageNet or 
Places.

𝑰𝒐
𝑼



Experiments – 5. Training conditions vs. Interpretability
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Experiments – 6. Discrimination vs. Interpretability
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Experiments – 7. Layer Width vs. Interpretability
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AlexNet-GAP-Wide:  Remove FC-layers, triple the number of units in conv5, i.e. 256 to 768 units, 
finally put a global average pooling layer after conv5 and fully connect the pooled 768-features 
activations to the final class prediction.



Experiments – 8. Fine-tuning
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Experiments – 8. Fine-tuning
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Conclusion
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1. Interpretability is not an axis-indepedent phenomenon

2. Deeper CNNs architectures appear to allow a greater interpretability, which also 
increases with the concepts that training set contains

3. Representation at different layers of CNNs disentangle different categories of 
meaning

4. Different training techniques and condition lead to a significant change of 
interpretability of representation learned by hidden units.

5. Interpretability and discriminative power are two qualities that need to be 
measured separately, though they have a positive correlation. 
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Thank you!
Pingchuan Ma

Contact: P.Ma@stud.uni-heidelberg.de


