Training robots with machine learning: Juggling & Throwing

Based on

Robot juggling: Implementation of memory-based learning TossingBot: Learning to throw arbitrary objects with Residual Physics

Training robots with machine learning

- Compared to digital tasks: *slooow*
- Starting new trials: not trivial
- Sometimes: Need fast predictions / decisions
- But also: highly useful

What does a robot-task look like?

- Input from environment
 - Sensor data
 - Camera
 - ...
- Issue command what robot should do
 - Turn motor to position x
 - Throttle/increase thrust by x
 - ...
- Commands lead towards goal
 - Can be very vague
 - Need to *understand* environment

What kind of model to use?

parametric

- Mathematical function with *finite* set of free parameters
- Global function fitting
- Don't remember data

Examples:

- Linear regression
- Neural networks

non-parametric

- Mathematical function with *unlimited* set of free parameters
- Local function fitting
- Remember data

Examples:

- N-nearest neighbor
- Kernel regression

- Non-parametric (memory-based)
- Estimate local linear models for different points
- Offers various statistical tools to:
 - Assess reliability of lookups
 - Optimize quality of lookup
 - Handle noise and corrupted data

- Unweighted regression:
 - Find solution to equations $y = X \beta$ (solve $X^T X \beta = X^T y$)
 - X: m x (n+1) matrix
 - m = # data points
 - n = # input dimensions
 - Prediction of query point x_q :

•
$$\hat{y}_q = x_q^T \beta$$

- Problem: each point is equally weighted
- Solution: Weight by distance

- Introduce distance to query point x_q
- For each stored data point: $d_i^2 = \sum_{j=1}^n s_j \left(X_{ij} x_{q_j} \right)^2$
- Weight for every point: $w_i = f(d_i^2)$
- Simple weighting function: $w_i = \frac{1}{d^k}$

• Better scheme:
$$w_i = exp\left(\frac{-d_i^2}{2k^2}\right)$$

- For each stored data point (index i)
 - Calculate distance to query point
 - Calculate weighting, based on distance
 - Multiply row in X and y with w_i
- Apply regression to weighted matrices
- Additionally: *ridge regression*
 - Classic regression: $X^T X \beta = X^T y$
 - Ridge regression: $(X^T X + \Lambda)\beta = X^T y$

LWR - Comparison

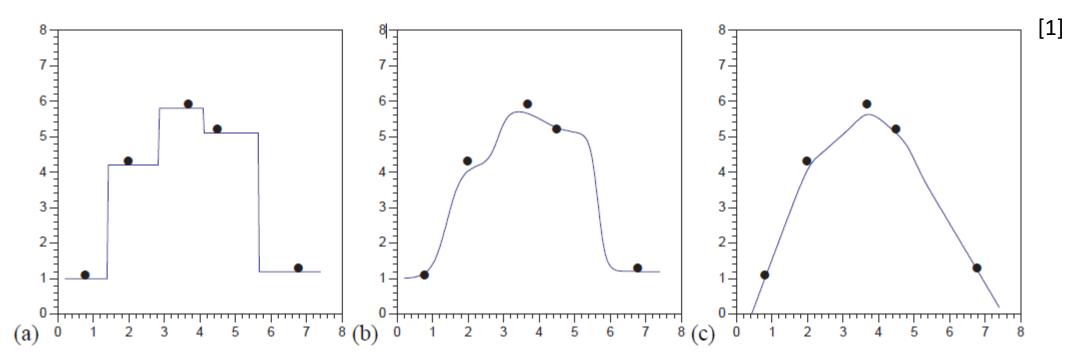


Figure 1: Characteristic performance of three different nonparametric function approximation techniques: (a) nearest neighbor; (b) weighted average; (c) locally weighted regression

Exploration

Problems:

- High-dimensional space
- Sparse data

Even worse:

- Robots are **slow**
- Some regions may be costly / unsafe

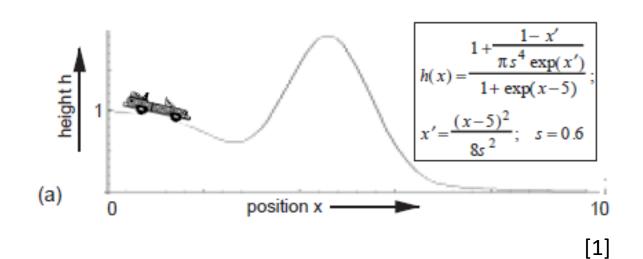
\rightarrow Random search not feasible

Shifting Setpoint Exploration Algorithm (SSA)

- Approach: slow and steady
- Break task down into two parts
 - Fast timescale: Keep system controlled at fixed certain points
 - Slow timescale: Shift setpoints towards goal
- \rightarrow Exploration around setpoints ensures confidence in that region
- → Shifting moves the system slowly but steadily towards target, learning along the way

SSA - Example

- Car driving along mountain road
- Task:
 - drive at constant *horizontal* speed $\dot{x}_{desired}$ from left to right
 - Minimize fuel consumption
- Interaction:
 - Noisy feedback of x and \dot{x}
 - Control thrust *F* at 5Hz



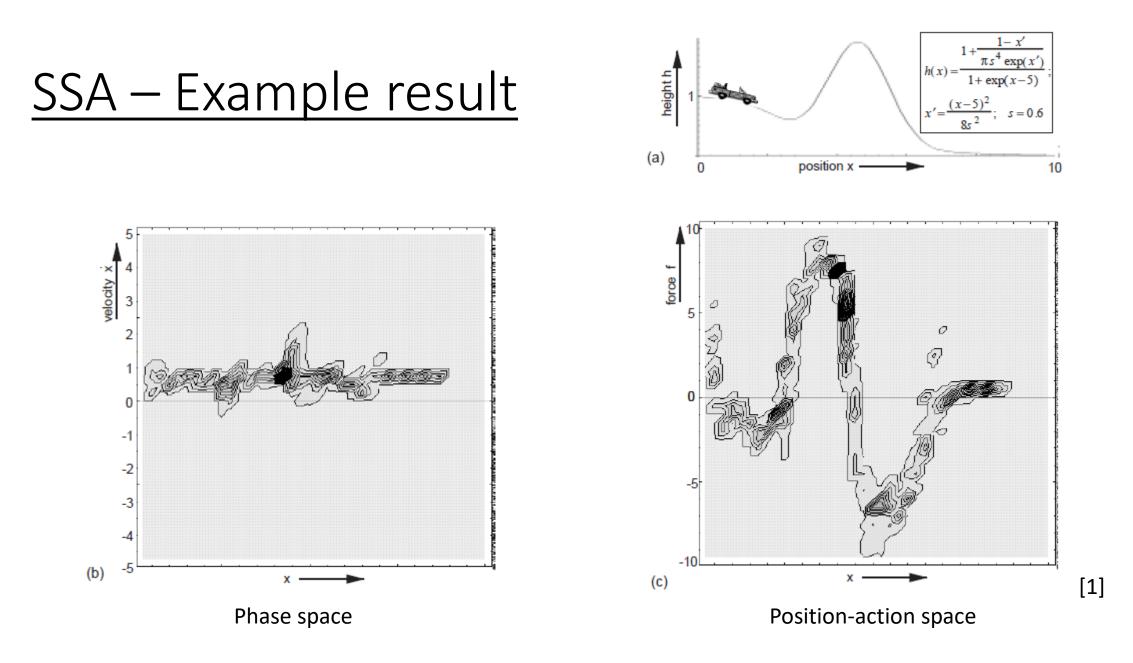
SSA - Initialization

- 1. Start at random location
- 2. Execute a few random trials
- 3. Search for point with highest confidence \rightarrow Declare as setpoint $(x_{S,in}^T, F_S, x_{S,out}^T)^T$

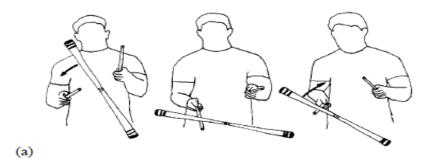
4. Try to reach setpoint from each new trial

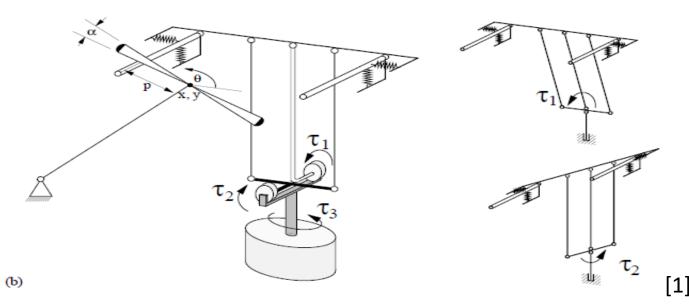
<u>SSA - Procedure</u>

- 1. Learn to reach setpoint until certain confidence
- 2. Take derivative of $x_{desired} x_{S,out}$ w.r.t. command F_S
- 3. Calculate correction ΔF_S and update: $F_S = F_S \Delta F_S$
- 4. Assess fit at updated setpoint
 - If quality above some threshold: continue with 1.
 - Else: Terminate



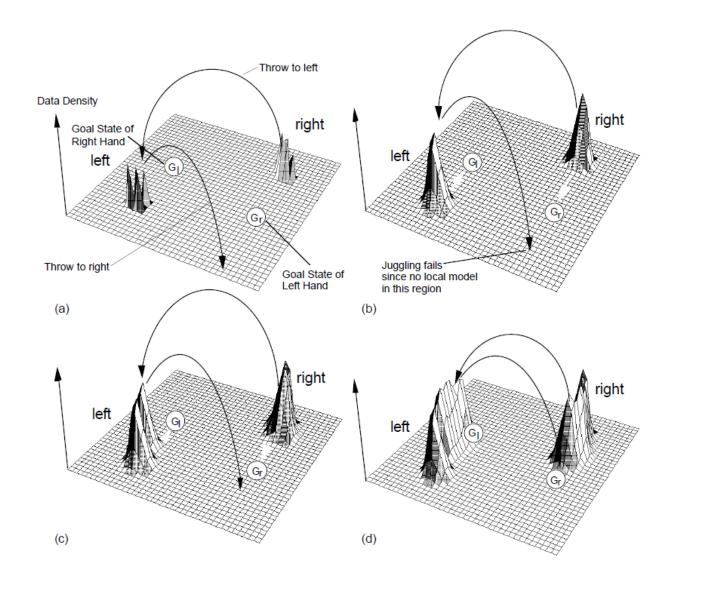
Robot juggling ("Devil sticking")





Task description

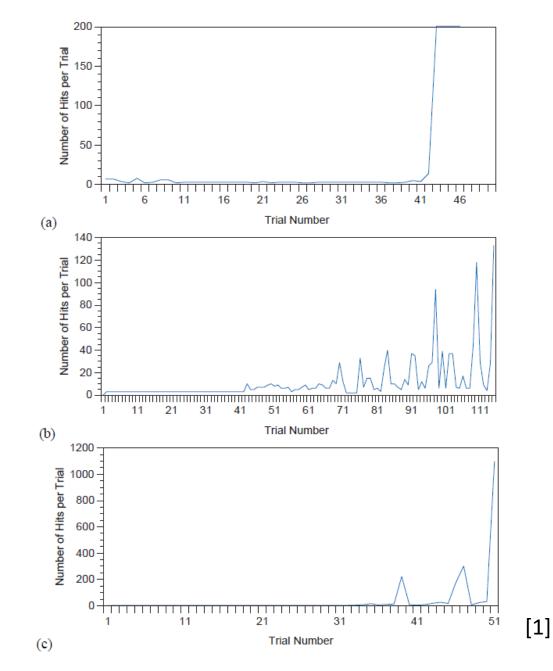
- Task state vector
 - Impact state with other hand stick at nominal position
 - $x = (p, \theta, \dot{x}, \dot{y}, \dot{\theta})^T$
 - After stick leaves hand: estimate impact with other stick from flight trajectory
- Task command
 - Displacement of hand stick from nominal position $(x_h, y_h)^T$
 - Center stick angular velocity threshold $\dot{\theta}_t$
 - Throw velocity vector $(v_x, v_y)^T$
 - $u = (x_h, y_h, \dot{\theta}_t, v_x, v_y)^T$
- Each throw generates experience vector $(x_k^T, u_k^T, x_{k+1}^T)^T$



[1]

<u>Devil sticking:</u> Learning curves

- a) Simulation results
- b) Real robot results
- c) Real robot results with small random noise in commands



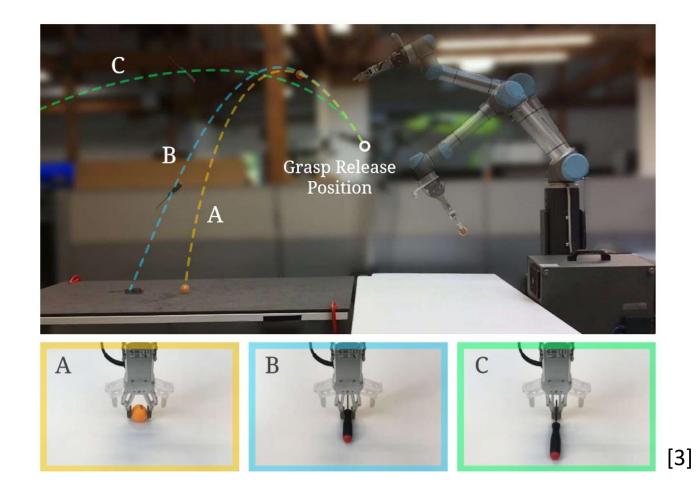
Model-based Reinforcement Learning of Devilsticking

Stefan Schaal & Chris Atkeson

[2.1]

More recent: TossingBot (March 2019)

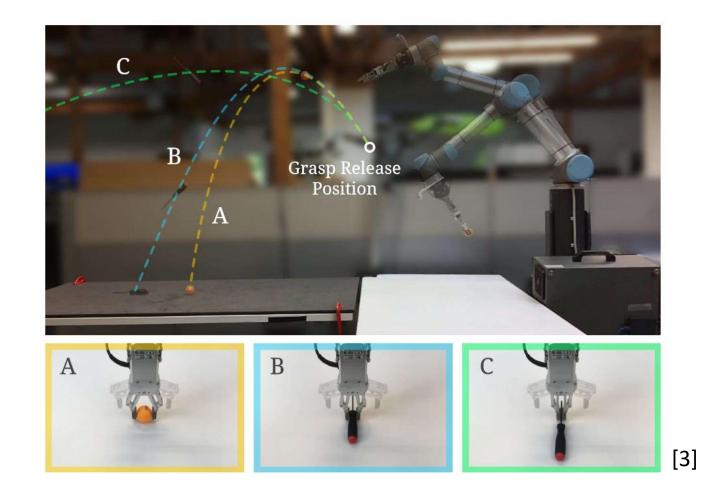
• Teach robot arm to grab **and** throw arbitrary objects



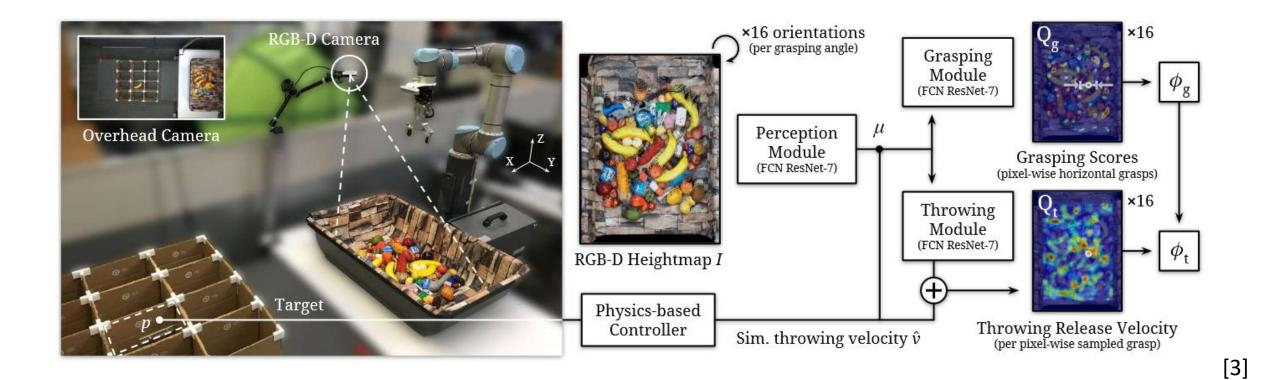
More recent: TossingBot (March 2019)

• Teach robot arm to grab **and** throw arbitrary objects

- 500+ mean picks per hour
- Generalization to new objects



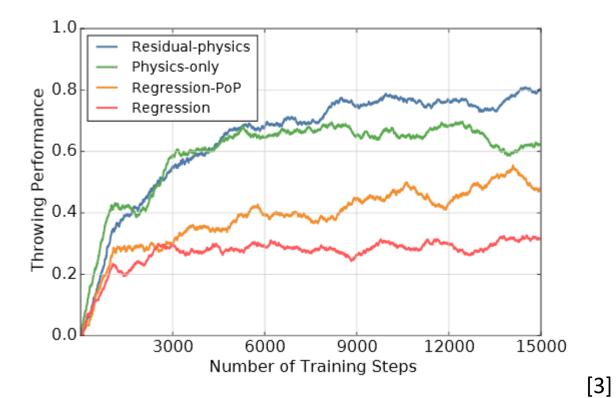
TossingBot - Structure





TossingBot - Results

	Grasping		Throwing	
Method	Seen	Unseen	Seen	Unseen
Human-baseline	_	_	_	80.1±10.8
Regression-PoP	83.4	75.6	54.2	52.0
Physics-only	85.7	76.4	61.3	58.5
Residual-physics	86.9	73.2	84.7	82.3



Conclusion

- Robot learning has long history with various methods
- Challenging task, additionally constrained by physical limitations
- LWR successful approach, already at early years
 - Has limitations: More data increases lookup-time
- Today: new approaches using Deep learning and hybrid methods

Sources

- (1) Stefan Schaal and Christopher G. Atkeson: "Robot Juggling: An Implementation of Memory-based Learning"
- (2) https://www.youtube.com/user/cga1959/videos (Chris Atkeson)
 - (1) A Robot Learning Devil Sticking <u>https://www.youtube.com/watch?v=KZdBBKgOyBg</u>
 - (2) 3 ball juggling and devil sticking by a robot <u>https://www.youtube.com/watch?v=pKJEbs64Y2o</u>
 - (3) Sarcos Dextrous Arm one ball paddle juggling <u>https://www.youtube.com/watch?v=rFHjHUqyp-I</u>
- (3) "TossingBot: Learning to Throw Arbitrary Objects with Residual Physics" <u>https://arxiv.org/abs/1903.11239</u>
- (4) https://tossingbot.cs.princeton.edu/
- (5) <u>www.cs.cmu.edu/~cga/bighero6</u> (build-baymax.org)
- (6) Wikipedia: Big Hero 6 (film) https://en.wikipedia.org/w/index.php?title=Big_Hero_6_(film)&oldid=902898498

Bonus slides

Fun fact

• Chris Atkeson's work was inspiration

[6]

Implementation of LWR

- 33 MHz Intel i860 microprocessor
- Peak computation rate: 66 MFlops (effective comp. rate: 20 MFlops)
 - n = 10 inputs, o = 5 outputs
- Lookup time \approx 15 ms on database of m = 1000 points

Optimizing LWR

The LWR fit was optimized using different measures:

- a) Global cross validation
- b) Local cross validation
- c) Local prediction intervals

