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1 Motivation

Our goal in the seminar ”Artificial Intelligence for Games” was to gain insight into the
exciting field of Artificial Intelligence. The application to Games is obvious when consid-
ering the complexity of the real world. Testing concepts in the context of games where
rules and objectives are clearly defined present a much more manageable problem.
Much of the work preceding the presented paper did not focus on creating real intel-
ligence but instead relied on brute-force methods to achieve superhuman performance.
It mostly focuses on search algorithms that try to efficiently evaluate as much of the
decision tree as possible rather than relying on human traits like knowledge or intuition.
Go was a long standing challenge in the field of Artificial Intelligence because of its
considerably higher complexity than chess. In the papers ”Mastering the game of Go
without human knowledge” and ”Mastering Chess and Shogi by Self-Play with a Gen-
eral Reinforcement Learning Algorithm” Silver et al. achieved a major breakthrough by
introducing AlphaGo Zero and AlphaZero. They were able to surpass state-of-the-art
performance without relying on any human knowledge. They use a novel self-play algo-
rithm to train a neural network to augment a Monte Carlo Tree Search (MCTS). Their
program is able to extract an understanding of the game that is much more ”human-
like” than any previous work. Additionally, the fact that they do not use any domain
knowledge widens the applicability of their work considerably.
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2 Related Work and Predecessors

2.1 Pachi

Pachi is an open source Go program that was introduced to the public by Petr Baudǐs
et al. in 2011 [2]. It implements a variant of the Monte Carlo Tree search algorithm.
They use a simplified version of the RAVE (Rapid Action-Value Estimates) algorithm
[3] to choose the next action during descent. It focuses on a compromise between UCT
and additional heuristic information. Their heuristics are very specific to Go and also
include a dictionary of known moves. They reported that their final performance was
achieved after extensive tuning of 80 different hyperparameters. Pachi was able to win
multiple KGS Go Bot Tournaments and is ranked as amateur 3-dan (this is comparable
to advanced amateur play) [12].

2.2 Crazy Stone

Crazy Stone is a proprietary Go program, developed by Rémi Coulom [4] which was orig-
inally published in 2012. It utilizes MCTS with UCT. In addition, the author leverages
pattern-based heuristics to determine potentially advantageous moves during playouts
thus narrowing down the search tree. In contrast to the purely handcrafted features of
Pachi, Crazy Stone originally used an unspecified supervised machine learning approach
to learn these heuristics. The machine learning approach used a combination of several
predefined pattern-based features. Crazy stone consistently outperformed Pachi in KGS
Go Bot Tournaments and was awarded an amateur 6-dan rating [5]. Additionally, it was
the first Go algorithm to play at a professional level. In 2016, Rémi Coulom published a
new version which replaced the former pattern-based approach with deep-learning. This
new version significantly improved Crazy Stone’s playing strength.

2.3 AlphaGo

This is the first time that a computer program has defeated a human professional
player in the full sized game of Go, a feat previously thought to be at least a
decade away.

– Silver et. al, 2015

AlphaGo is a Go Program that was developed by Google DeepMind [10]. In 2015,
it was the first computer program to beat a human professional Go player. In March
2016, it was able to beat Lee Sedol, making it the first program to beat a professional
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9-dan level player without handicap. In contrast to prior work which were based on
MCTS and enhanced by shallow policies, AlphaGo uses a different approach to improve
MCTS. It uses two neural networks, a value and a policy network to reduce the depth,
and breadth of the search tree. These networks are trained using a pipeline consisting
of several stages of machine learning:

Supervised learning of policy networks The goal of using a policy network is to reduce
the breadth of the search tree by focusing more attention on moves that the policy
networks deems as advantageous. The SL policy network pσ(a|s) is a convolutional
neural network with alternating convolutional layers with weights σ and rectifier
nonlinearities. This network gets trained to predict human expert moves using
gradient descent:

∆σ ∝ ∂ log pσ(a|s)
∂σ

(2.1)

In addition to pσ, they trained a simpler and faster rollout policy pπ(a|s). This
policy replaces the CNN with a simple linear softmax classifier. This classifier uses
small handcrafted local features which are similar to the features that the original
implementation of Crazy Stone used. Using this fast rollout policy pπ only takes
2µs instead of 3ms for the policy network pσ.

Reinforcement learning of policy networks This stage tries to improve the policy net-
work pσ by self play. They define a new network pρ that is initialized as a copy
of pσ. This network is trained by policy gradient reinforcement learning. They
define a reward function r(t) which equals zero for all non-terminal time steps.
The reward for a terminal time step is +1 for winning and −1 for loosing. This
means that they only use terminal rewards zt = r(sT ) for gradient descent:

∆ρ ∝ ∂ log pρ(at|st)
∂σ

zt (2.2)

Reinforcement learning of value networks The use of a value network enables the MCTS
to truncate the MCTS rollout at specific depth and compute the expected outcome
with the value function vp(s).

vp(s) = E[zt|st = s, at...T ∼ p] (2.3)

Given that both players use the same policy p. Given that Go is a two player zero
sum game with perfect information, there exists an optimal value function under
perfect play v∗(s). The authors approximate v∗(s) by estimating the value function
for pρ with the value network vθ(s) (v∗(s) ≈ vpρ(s) ≈ vθ(s)). Instead of predicting
game outcomes from complete games, which leads to overfitting, they generate a
self-play dataset consisting of 30 million distinct positions sampled from distinct
games. A single evaluation of vθ significantly outperforms a policy guided Monte
Carlo rollout using pρ, while taking 15000 times less computation time. The value
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network gets trained by minimizing the mean squared error between the predicted
value and the observed outcome z by gradient descent:

δθ ∝ ∂vθ
∂θ

(z − vθ(s)) (2.4)

Searching with policy and value networks The authors combine the policy and value
networks with an MCTS algorithm. The tree saves an action value Q(s, a), visit
count N(s, a), and prior probability P (s, a) for each of its edges (s, a). At each
non-terminal timestep t, an action at is selected from state st:

at = argmax
a

(Q(st, a) + u(st, a)) (2.5)

The bonus u(st, a) is selected using a variant of the PUCT algorithm [8]. The
bonus is given by:

u(s, a) ∝ P (s, a)

1 +N(s, a)
(2.6)

where the prior probability is calculated with by SL-trained policy network: P (s, a) =
pσ(a|s). When reaching a leaf node at timestep L, the win probability is calculated
by the evaluation of the value network vθ(SL) and the outcome of a rollout using
the fast rollout policy pπ. The results are combined using a mixing parameter λ.

V (sL) = (1− λ)vθ(sL) + λzL (2.7)

After the simulation is complete, the visit count and the action value get updated:

N(s, a) =

n∑
i=1

1(s, a, i) (2.8)

Q(s, a) =
1

N(s, a)

n∑
i=1

(s, a, i)V (siL) (2.9)
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3 AlphaGo Zero

Maybe it can show humans something we’ve never discovered. Maybe it’s beau-
tiful.

– Fan Hui, 2016

AlphaGo Zero is the Google Deepmind’s successor to AlphaGo [11]. It falls into the
category of deep learning augmented MCTS algorithms. In contrast to AlphaGo, it is
trained completely unsupervised and no domain knowledge other than the rules of the
game is implemented. Thus, the main contribution of the paper is to demonstrate that
superhuman performance can be achieved without relying on human knowledge. Fur-
thermore, the value and policy networks get replaced by a single network that combines
both tasks. This single CNN only uses the raw board as input.

3.1 Search algorithm

Figure 3.1: Search agorithm

AlphaGo Zero uses a similar implementation of the MCTS algorithm used in AlphaGo.
Each node in the tree contains edges (s, a) for all legal actions a ∈ A(s).. Each node
stores the following statistics:

{N(s, a),W (s, a), Q(s, a), P (s, a)} (3.1)

where N(s, a) is the visit count, W(s,a) is the total action value, Q(s, a) is the mean
action value and P (s, a) is the prior probability. The implemented algorithm follows the
basic structure of the vanilla MCTS. The main difference between AlphaGo Zero and
AlphaGo is that during play AlphaGo Zero does not do any random rollouts. It simply
uses the neural network together with look-ahead search to select the best action.
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Select (Figure 3.1a) At the beginning of each simulation, the node of the search tree s0
is selected. The simulation finishes when it reaches a leaf node sL at time step L.
At each time-step t < L an action is selected according to the PUCT algorithm.
This step is completely identical to AlphaGo.

Expand and evaluate (Figure 3.1b) The leaf node is evaluated by the neural network:

di(p, v) = fθ(di(sL)) (3.2)

where di is a random dihedral reflection. This is done to leverage Go’s inherent
symmetry for training data augmentation. The node is then expanded and each
edge (sL, a) is initialized to:

{N(sL, a) = 0,W (sL, a) = 0, Q(sL, a) = 0, P (sL, a) = pa} (3.3)

Backup (Figure 3.1c) After expansion, all edge statistics are updated in a backward
pass through all previous time-steps: t ≤ L.

N(st, at) = N(st, at) + 1 (3.4)

W (st, at) = W (st, at) + v (3.5)

Q(st, at) =
W (st, at)

N(st, at)
(3.6)

Play (Figure 3.1d) After the end of the search, AlphaGo Zero selects the move a to
play in the root position s0 according to:

π(a|s0) =
N(s0, a)1/τ∑
bN(s0, b)1/τ

(3.7)

where τ is a temperature parameter controlling exploration. The played node gets
selected as the new root node s0 and the tree above is discarded.

3.2 Self-play training pipeline

AlphaGo Zero uses one CNN with two regression heads to calculate the move probabil-
ities pa = Pr(a|s) and the probability of the current player winning from the current
position v. This network fθ(s) = (p, v) gets trained by a novel self-play reinforcement
learning algorithm. The core idea is to use the MCTS itself as a powerful policy and
value improvement operator. During training an MCTS, search guided by the neural
network fθ is carried out. The resulting move probabilities π are usually much stronger
than the raw move probabilities p of the neural network fθ(s). The network is then
trained to better predict the improved move capabilities π. The outcome z of the self
play games obtained by playing with the MCTS-based policy is used to train the net-
work to better predict the winner of the game. The use of both operators is repeated
in a policy iteration procedure leading to even better games carried out by the improv-
ing neural network fθ in successive games. The training pipeline consists of three main
components which are all executed asynchronously in parallel.
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Optimization Each neural network fθ is trained with mini batches that are sampled
randomly from the last 500000 games of self-play. The network parameters θ are
optimized by minimizing the loss function

(p, v) = fθ(s) and l = (z − v)2 − πT logp + c||θ||2 (3.8)

by gradient descent. The first part of the loss function is the mean squared error
between the predicted value v and the self-play winner z. The second part is
the cross entropy loss between the predicted move probabilities p and the search
probabilities π that were obtained using MCTS to augment p. Because π is always
a stronger prediction than p, they achieve good convergence. The increasingly
better play of the network also ensures that the accuracy of the value v improves
steadily.

Evaluator To ensure the quality of the training data the network weights θ are not
updated continuously. Instead, the performance of the updated neural network
gets evaluated regularly against the previous version. Each evaluation consists of
400 games. If the new network wins by a margin of > 55%, the network gets
updated with the new weights. This suppresses noise during training.

Self-play The self-play dataset is continuously fed with new data from the actual network
fθ playing against itself. The difference to the non-self play algorithm is that the
policy network gets augmented by 1600 Monte Carlo simulations. To ensure good
training data, Dirichlet noise is added to the prior probabilities at the root node
s0. This increases exploration. To further increase exploration during the first 30
moves of the game, the temperature is set to θ = 1. The temperature is set to
θ = 0 for the remainder of the game.
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3.3 Neural network architecture

Much of the improved performance of AlphaGo Zero over AlphaGo can be attributed to
the new network architecture. The two major changes are the use of residual nets and
one single network instead of two.
When AlphaGo was released to the public in 2015, the concept of residual learning in the
context of deep-learning was not introduced yet. This concept was introduced by He et
al. one year later in 2016 [6]. The use of residual networks enables the training of deeper
and thus more powerful networks by introducing skip connections. These connections
represent a shortcut for the gradient during backpropagation thus solving the problem
of vanishing gradients.
The use of one network for multiple related tasks is known as multi-task learning (MTL).
MTL is successfully employed in many different fields like language processing, speech
recognition, and computer vision [9]. MTL has a strong regularizing effect because the
network has to find a common suitable representation for multiple tasks. This repre-
sentation appears to be more general and performs better than two separate networks.
Furthermore, the computational efficiency is significantly improved because most of the
network is shared between the two regression heads.

Figure 3.2: Comparison of neural network architectures in AlphaGo Zero and
AlphaGo. To separate contributions of architecture and algorithm, a vari-
ant of AlphaGo Zero with the old architecture of AlphaGo was implemented.
The ’sep-conv’ architecture corresponds to the original architecture of Al-
phaGo with two separate networks. Changing to one single network (’dual-
conv’) considerably increases performing. It is now on par with two separate
residual networks (’sep-res’). The highest performance is achieved by using
one single residual network (’dual-res’). This architecture is slightly worse
at predicting expert moves than ’sep-res’ but clearly outperformed it at pre-
dicting game outcomes.
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Figure 3.3: Supervised vs reinforcement learning a Performance comparison be-
tween AlphaGo, a supervised version of AlphaGo Zero, and the reinforce-
ment learning version. The supervised version reaches the same performance
as AlphaGo. This indicates that the human knowledge used for training
creates a bottleneck. b Prediction accuracy on human professional moves.
The supervised version converges considerably faster and reaches higher ac-
curacy. c Mean-squared error (MSE) human professional game outcomes.
The reinforcement learning version converges slower but ultimately performs
much better.

3.4 Performance

Figure 3.4: Performance of AlphaGo Zero. a The plot shows the performance of
the best network of AlphaGo Zero over a period of 40 days. It is able to
outperform the original version of AlphaGo (Lee) after only 3 days and is
outperforming AlphaGo (Master) after 30 days. b AlphaGo Zero outper-
forms all previous approaches. The raw network (not using lookahead search)
outperforms Crazy Stone by 1000 points. A 200-point gap corresponds to a
75% win rate.
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AlphaGo Zero outperforms all previous approaches. This is particularly impressive be-
cause all prior attempts relied on huge datesets of human expert knowledge. The results
imply that the quality of the training data set limits the performance. The performance
improvement can only be attributed to the employed deep learning techniques because
all tested programs rely on the same basic version of MCTS with a variant of UCT to
balance exploitation and exploration. The only thing in which they differ is the way they
compute their prior probabilities of actions p and the value of the states v(s). Pachi
relies on handcrafted heuristics, Crazy stone learns supervised to evaluate handcrafted
features and AlphaGo learns an own feature representation. Particularly impressive is
that the raw network outputs of AlphaGo Zero are able to defeat all programs prior
to original version of AlphaGo. The network is good enough to play by intuition and
does not rely on lookahead to reach human expert level performance. This has the side
effect that AlphaGo Zero is computationally more efficient compared to AlphaGo. The
concept of a strong network guiding the MCTS search is clearly superior to brute force
simulation with a fast (but also very simple) rollout policy.

3.5 Learned knowledge

AlphaGo Zero does not use any domain knowledge and is trained without any human
supervision. This means that it is not constrained to human play. Nonetheless it learned
previously known joseki (standard moves), just to later drop these moves and develop
knew previously unknown variants. It was able to quickly progress from completely
random play towards a deep high level understanding of advanced Go concepts. These
concepts were developed by professional players over centuries.

11



4 AlphaZero

AlphaZero is Google Deepmind’s successor to AlphaGo Zero [1]. The fact that AlphaGo
Zero only uses minimal domain knowledge and does not rely on the existence of an
extensive dataset of expert level games, enables its use for any two player zero-sum game
with perfect information. The authors evaluated the performance on Chess, Shogi, and
Go.

4.1 Differences to AlphaGo Zero

While AlphaGo Zero only uses minimal domain specific techniques, several changes
where needed in order to apply the algorithm to Chess and Shogi.

Data augmentation Go exhibits dihedral symmetry. This fact was used during training
for data augmentation but also during MCTS search. The authors argue that this
decreases bias. Both, Chess and Shogi, are highly asymmetric games. Thus, Alp-
haZero omits any data augmentations and makes no domain specific assumptions.

Value function The game outcome of Go is always either a win or a loss. In chess and
Shogi there also exists the possibility of a draw. AlphaZero predicts the game
outcome taking account of draws and other potential outcomes.

Evaluator The authors observed that the Evaluator from AlphaGo Zero is not strictly
necessary and thus chose to omit it in AlphaZero. Instead, the weights of the
network get updated continuously.

Hyperparameters The hyperparameters for AlphaGo Zero were tuned by Bayesian op-
timization. For AlphaZero, no game specific optimization is done. All games are
played with the same set of hyperparameters.
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4.2 Performance

Figure 4.1: Performance of AlphaZero in Chess, Shogi and Go.

Chess Chess was long seen as the pinnacle of AI research. The previous best performer
Stockfish [7] is based on alpha-beta search engine with many highly domain-specific
adaptions. It evaluates 70 million positions per second, compared to AlphaZero
which only evaluates 80 thousand positions per seconds. AlphaZero was able
to outperform Stockfish without any human knowledge. This indicates that the
learned knowledge present in the neural network is of considerably higher quality
than the handcrafted heuristics of Stockfish.

Shogi Shogi is a Japanse board-game that is very similar to Chess. AlphaZero was able
to outperform the previous top performer Elmo by a greater margin than it was able
to against Stockfish. This highlights a limitation of approaches with handcrafted
heuristics: They are game specific and not transferable to other problems. The
considerably smaller research community led to less sophisticated heuristics and
thus to worse performance than Stockfish is able to achieve for chess. The authors
of AlphaZero did not have any expert knowledge about the game except its rules.
This was enough to achieve state of the art performance.

Go AlphaZero outperforms AlphaGo Zero in Go by a small margin. This indicates that
neither the absence of domain knowledge nor the absence of the evaluator degrades
the performance. The increased performance can be explained by the fact that the
training of AlphaGo Zero was stopped prematurely.
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5 Conclusion

The authors were able to surpass state of the art performance in Go, Chess and Shogi
while not relying on human training data. Their main contribution is that their approach
is very general and easily applicable to any two person perfect information board game.
Previous work relied on two main points: being able to evaluate as much of the decision
tree as possible and using very domain specific handcrafted heuristics. The first point
clearly showed its limits for games with a huge search space like AlphaGo and the second
point severely limits transferability to other problems.
AlphaGo Zero and AlphaZero do not rely on the evaluation of as many positions as
possible but instead on the quality of learned knowledge thus enabling more ’human-
like’ play and an AI that is able to develop new strategies instead of simply imitating
human play.
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