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1 Introduction

1.1 Motivation

Machine Learning has reached a state where it can achieve superhuman performance
for many applications, such as answering trivia questions [Marko�, 2011], diagnos-
ing skin cancer [Kubota, 2017] and even performing legal work [Kohn, 2017]. These
machine learning models and many others that are used in practice, work as a black
box. Black-box models perform signi�cantly better than their white-box counter-
parts, with the disadvantage of not giving the user a notion of how the prediction
was formed. This leads to several downsides. Firstly, the new General Data Protec-
tion Regulation (GDPR) states that a subject that, "[the data subject should have]
the right [...] to obtain an explanation of the decision reached" [European Union,
2016, Recital 71]. Black-box models can not provide such an explanation. Secondly,
if scientists understand what models do, they can potentially improve the models
performance [Saleema et al., 2015]. Furthermore, scientists can use the explanations
of a well performing model to possibly make new scienti�c discoveries [Shrikumar
et al., 2016].

To tackle the disadvantages of black-box models and make their actions more
comprehensible, we will introduce a method of explaining the results, to the user.

1.2 Related work

Because of the relevance of this issue, other approaches on how to explain a predic-
tion of a model have already been published.

One approach is �tting another model locally around a test point. This other
model is a simple approximation of the original model and therefor easier to un-
derstand by humans. This approach was published for example in [Ribeiro et al.,
2016].

Another approach is to modify the attribute values of a test point and then look
at the change in the prediction. This approach is closely related to trying to �nd
attributes that maximize the con�dence of the model for a certain target value.
Results of research using this approach was published in [Simonyan et al., 2013],
[Datta et al., 2016], [Adler et al., 2016] and [Li et al., 2016].

These approaches have in common that they treat a black-box model and its
prediction as a �xed entity. They do not explain how the model came to be in the
�rst place.
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1.3 Overview

First we will lay the theoretical groundwork in the chapter Theoretical Foundations.
Here we explain the approach and show how it can be adapted to solve real-world
problems. In the next chapter (3), we present experiments and their results to show
that the theory works. Furthermore, we also present some practical applications.
Finally, in the Conclusion we summarize the content of this seminar thesis and also
highlight some disadvantages.
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2 Theoretical Foundations

2.1 Approach

2.1.1 Idea

As the term machine learning suggests, the predictions for a data point are learned
and not known a priori. For supervised learning, this is done using training data
where the correct values or labels of the prediction task are known. Instead of
treating the model as a �xed entity we trace the prediction back to the training
data. Here, the model parameters were learned. We then can use the training data
to give an explanation of how much an individual part of the training data in�uenced
a given result.

2.1.2 Calculating In�uence

To have a �ne notion of the in�uence a training point has on a given test point, we
derive two measurements of in�uence. Firstly, the total impact a training point has
on a test point. Secondly, the impact individual attributes have on a test point. The
total impact of a training point can be calculated by looking at the impact of up-
or down-weighting the importance of a training point, whereas for the individual
features a training point has to be perturbed.

In general, we have an input space X where we want to predict the correct values
of an output space Y for a prediction problem. We have obtained training points
z1, . . . , zn where each zi = (xi, yi) ∈ X × Y . We de�ne a loss function L(z, θ)
with a training point z and parameters θ ∈ Θ. We de�ne our average loss over all
training points, given by 1

n
Σn
i=1L(zi, θ), as the empirical risk. The goal is to �nd

an empirical risk minimizer θ̂, which is given by θ̂
def
= argminθ∈Θ

1
n
Σn
i=1L(zi, θ) with

any regularization term being folded into L. For this section we assume that the
empirical risk is twice-di�erentiable as well as strictly convex in θ. In the section
Generalization and Optimization we relax these restrictions.

Upweighting of a training point First, we want to understand the total impact
of a training point on a prediction of the model. We begin by studying the change
of parameters θ, given an upweighting of a training point z by some factor ε. The

empirical risk minimizer is then de�ned as θ̂ε,z
def
= argminθ∈Θ

1
n
Σn
i=1L(zi, θ)+εL(z, θ).

Note that the impact of the removal of a training point z can be calculated by setting

ε
def
= − 1

n
. We now derive the impact for an in�nitesimally small ε using the idea of
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in�uence from [Cook and Weisberg, 1982]. This gives us:

Iup,params(z)
def
=
dθ̂ε,z
dε

∣∣∣∣
ε=0

= −H−1

θ̂
∇θL(z, θ̂)

(2.1)

1.
Here we derive the empirical risk minimizer with respect to ε at ε = 0. This

represents the in�nitesimally small upweighting. The hessian matrix of the empirical

risk minimizer is given by Hθ̂

def
= 1

n
Σn
i=1∇2

θL(zi, θ̂) and positive de�nite by assumption.
Since we noted earlier that the removal of a point is equivalent to upweighting

it by ε
def
= − 1

n
, we derive that Iremove,params(z)

def
= − 1

n
Iup,params(z). This can be

calculated without having to retrain the model. After we calculated the in�uence
of the upweighting on the parameter, we now need to calculate the in�uence on the
loss for a test point. This gives us a notion of how much impact a training point
has on a prediciton for the speci�c test point (ztest). We derive this using the chain
rule.

Iup,loss(z, ztest)
def
=
dL(ztestθ̂ε,z)

dε

∣∣∣∣ε=0

= ∇θL(ztest, θ̂)
>dθ̂ε,z
dε

∣∣∣∣
ε=0

= −∇θL(ztest, θ̂)
>H−1

θ̂
∇θL(z, θ̂)

(2.2)

Perturbing of a training point In the second step we develop a �ner notion of
in�uence by looking at the in�uence of the individual features of a training point.
To �nd the solution to this problem we answer the question: How does a prediction
change, if we alter the features of a training point? .
Consider an original training point z = (x, y), for which we de�ne the altered point

zδ
def
= (x + δ, y). Then, let θ̂zδ,−z be the empirical risk minimizer for when training

point z is replaced by altered point zδ. An approximation of the new parameters

caused by moving εmass from z onto zδ is given by: θ̂ε,zδ,−z
def
= argminθ∈Θ

1
n
Σn
i=1L(zi, θ)+

L(zδ, θ)− L(z, θ). Performing analogous calculations as in equation 2.1 gives us:

Ipert,params(z)
def
=
dθ̂ε,zδ,−z
dε

∣∣∣∣
ε=0

= Iup,params(zδ)− Iup,params(z)

= −H−1

θ̂
(∇θL(zδ, θ̂)−∇θL(z, θ̂))

(2.3)

1The calculations are detailed in Appendix A of [Koh and Liang, 2017]
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.

If the attribute values of x are continuous and δ is small, we can approximate
Ipert,params(z) further. If the input space X ⊆ Rd, the parameter space Θ ⊆ Rp and
for the loss L exists a derivative in θ and x.

We can approximate ∇θL(zδ, θ̂)−∇θL(z, θ̂) ≈ [∇x∇θL(z, θ̂)]δ from equation 2.4
as the absolute value of δ goes towards 0. Using this approximation, we can now
apply the chain rule and calculate the in�uence of attributes of a training point on
a test point (Ipert,loss(z, ztest)). This gives us:

Ipert,loss(z, ztest)
> def

= ∇δL(ztest, θ̂zδ,−z)
>
∣∣∣∣
δ=0

= −∇θL(ztest, θ̂)
>H−1

θ̂
∇x∇θL(z, θ̂)

(2.4)

.

This formula lets us identify the most in�uential features on the loss for ztest.
This can be interpreted as being the features that have the biggest impact on the
prediction of the model. To be precise Ipert,loss(z, ztest)

>δ gives us an approximation
of the e�ect that z 7→ z + δ has on the loss at the point ztest.

2.2 Generalization and Optimization

2.2.1 Non-di�erentiability of the loss function

One assumption we made, was that the empirical risk is twice-di�erentiable. Hence,
the loss function has to be twice-di�erentiable. This is not the case for all loss
functions. For example the �rst and second derivative of the Hinge-loss function,
which is de�ned as Hinge(s) = max (0, 1− s), is unde�ned at s = 1. We can use a
smooth approximation of the Hinge loss function which in turn is twice-di�erentiable.
The smooth Hinge loss is dependent on a smoothing hyper-parameter t and de�ned
as: SmoothHinge(s, t) = t log (1 + exp (1−s

t
)). When setting t to 0, the smooth

Hinge loss is equivalent to the normal Hinge loss function. Both functions are
plotted in �gure 2.1. The practical implications of using the smooth approximation
of loss functions is discussed in more detail in [Koh and Liang, 2017, chapter 4.3].

2.2.2 Non-convexity of the Loss

Another assumption we made, was that the empirical risk is strictly convex in θ. In
practice this is generally not the case. Instead of a global minimum θ̂, we obtain
an approximation θ̃ by running some variant of gradient descent. Because θ̂ 6= θ̃
the Hessian Hθ̃ can have negative eigenvalues. By constructing a convex quadratic
approximation of the loss around θ̃, we can negate this e�ect. This method is
illustrated in more detail in the original paper ([Koh and Liang, 2017, chapter 4.2]).
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Figure 2.1: A plot of the Hinge and smooth Hinge loss functions using di�erent
values for smoothing parameter t

2.2.3 Computational complexity

When calculating the in�uence functions we face two complexity problems. First, the
calculation and inversion of the Hessian matrix Hθ̂ has a complexity of O(np2 + p3),
with n being the number of training points and θ ∈ Rp. Second, in practice it is
often necessary or useful to calculate Iup,loss(zi, ztest) for all training points zi.
The �rst problem can be handled by using implicit Hessian-vector products ([Pearl-

mutter, 1994]) to get an approximation of stest
def
= H−

θ̂
1∇θL(ztest, θ̂). We use this in-

termediate step to calculate Iup,loss(zi, ztest) = −stest∇θL(z, θ̂). We can precompute

stest and then calculate −stest∇θL(zi, θ̂) for each zi to solve the second problem. In
the paper ([Koh and Liang, 2017]) the authors present two possible techniques to
approximate stest, namely Conjugate gradients by [Martens, 2010] and Stochastic
estimation by [Agarwal et al., 2016].
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3 Experiments

3.1 Validation using leave-one-out retraining

To show that the theory works, the authors conduct several experiments. Here they
compare the computed in�uence to the actual change of prediction, when removing
a training point and retraining the model. In theory the values for − 1

n
Iup,loss(z, ztest)

(the e�ect of removing a training point) and L(ztest, θ̂−z) − L(ztest, θ̂) (actually re-
moving a training point and retraining the model) should be approximately equal.

Figure 3.1: In�uence vs. Leave-one-out error for di�erent scenarios

In �gure 3.1 the results of in�uence and leave-one-out retraining are shown. For
each experiment the MNIST dataset was used and for ztest an arbitrary randomly
misclassi�ed test point was chosen. If the assumptions from the previous chapter are
correct, we should see all data points on or close to the identity function (f(x) = x).

The left plot shows the 500 training points with the highest absolute in�uence on
ztest for a logistic regression model. In this experiment the Hessian-vector products
were solved exactly using the Conjugate gradients method. Here the points are very
close to the ideal result.

In the center plot the Hessian-vector products were approximated with Stochastic
estimation. Otherwise, the experiment is identical to the �rst one. For the Stochastic
approximation the parameters were set to: repeats = 10 and iterations = 5,000. This
approximation saves computational resources, but still gives quiet accurate in�uence
values.

The right plot shows the top most 100 in�uential points for ztest. In this case
a convolutional neural network was the underlying model. Just like in the �rst
experiment, the Hessian-vector products were solved exactly using the Conjugate
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gradients method. For the retraining, that was necessary to �nd the actual di�erent
in loss, starting at θ̃ 30,000 steps were used to �nd θ̃−z.
We can see in all three �gures that the calculated in�uence and the change after

retraining are approximately equal. Therefore, the method works as expected.

3.2 Practical applications

In the original publication by Pang Wei Koh and Percy Liang, the authors presented
a handful of applications using the derived method. For each application they also
provide the results of a corresponding experiment.

Finding important training points With the presented approach, we can �nd the
in�uence of a training point on a prediction. We can use this to �nd out how much
the model relied on a training point for its prediction. This can then be used as a
way to explain the prediction to a user.

Generating adversarial training points The goal of an adversarial training point
attack is to generate visually-indistinguishable images in the training set that change
the prediction for a test image.
Using the in�uence we can determine the most important training points for a

given test point. When perturbing the training points for our attack, we only have
to focus on the most in�uential ones. The results of the successful attack are detailed
in [Koh and Liang, 2017, chapter 5.3].

Finding a domain mismatch The notion of in�uence can also be used to identify
a possible domain mismatch between the training and test data sets. The authors of
[Koh and Liang, 2017] achieve this by identifying the training points that have the
highest in�uence for false predictions. They then compare them to the data from
the test set.

Fixing mislabeled training points Furthermore, the approach can be applied
to identify mislabeled training data. For this use-case the idea is to calculate the
in�uence of training point zi on itself, which is given by Iup,loss(zi, zi). This gives us
an approximation of the error on zi of we remove said point from our training set.
In a nutshell, this in�uence describes how unique a training point is. The points
are the ordered by uniqueness and can then be checked manually. This reduces the
time and cost of data cleansing.
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4 Conclusion

In this report, we introduced an approach of explaining black-box models using the
training data. This approach is chosen because the training data is the origin of the
learned parameters for a machine learning model. Furthermore, we showed practical
applications and veri�ed the theory using experiments.
Unfortunately we could not reproduce the results that were conducted indepen-

dently using a modi�ed version of the source code published by the original authors.
We used a smaller dataset and fewer computations when approximating the Hessian-
vector products due to resource limitations. The covariance between predicted and
actual di�erence in loss was only around 0.294 and is therefore much smaller than
in the original paper.
One shortcoming of the presented method is that it can not detect global trends

in the data. This is owed to the nature of the method. If a pattern is spread out
evenly in the training data, there no longer exist a subset of points which can be
considered special.
Another possible issue for the application of this method is linked to privacy

concerns. In some cases the training data can not be or should not be made public.
Let's assume we have a model that generates a treatment plan for a patient given
some features (age, symptoms, medical history, etc.) of that patient. In this scenario
the training data used, is historical patient data. When someone wants to know how
the model came to its proposed treatment plan, we would output medical data of a
stranger. This is not legal in most cases.
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