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1 Introduction

Beginning in 1950 with Claude Shannon’s pioneering work in artificial intelligence the path
to a program capable of defeating human players was set. In the early days of AI research the
question of solving a game was based on human like approaches. The human-like strategies
were not necessary the best computational strategy [1]. The realization that a brute-force
method could perform well without an application-dependent knowledge was a great step
forward to game playing computers. In 1963, the first checker program capable of defeating
human players was created. With the publication of the program Checkers was seen as solved,
which is not completely correct because 1) It could not defeat the world champion and 2)
winning the game does not imply the game theoretic value of Checkers. Because of this
the search for ”the answer” started again in 1989 with Jonathan Schaeffer as team leader.
They started with the creation of a champion beating computer with the name ”Chinnok”.
Chinnok uses an endgame database and a max-min game-tree for determining its next move.
In 1992 they used over 200 processors simultaneously for calculating the endgame database.
In the same year Chinnok played its first time against the world champion Marion Tinsley. It
is said that Tinsley is the best checkers player who has ever lived. He was also a supporter of
the AI research since he had no worthy opponent. At first the team around Schaeffer tried to
compete in the Checkers world championship, but the organizers prohibited the participation
and only when Tinsley reject his first place the organizers created a men against machine
competition. In the over 30 rounds played Chinnok won 2 and Tinsley 8 while the other
ended in draws. During the games the weaknesses of Chinnok showed up, for example during
one of the games which turned out to be a loss for Chinnok, Tinsley already knew that he
will win 40 moves before the end. In other words, Tinsley had a greater endgame database
and was able to plane more steps ahead.
In 1994, with a greater endgame database, Chinnok defeated Tinsley, but the win is debatable
because they only played 8 rounds (all a draw) and then Tinsley resigned because of health
problems.
With the creation of a world champion checker computer the first steps of solving the game
were made, but the computation went on until 2007 for the final result.

2 Checkers

Checkers is a game known and played for a long time. Therefore, a lot of different variations
are played at the moment. They differ in many things like board size (8x8 - 14x14) with a
different number of starting pieces and moving rules. All games have a common play principle,
someones wins if his opponent can not move any further (no pieces left or all are blocked from
moving) and the ”normal” pieces are transformed to a king if they reach the opposing end of
the board. In addition, all pieces and kings can capture enemy pieces by jumping over them.
In the solved version, normal pieces can only move 1 field and only forward, while the kings
can move 1 field in forward or backward direction. A special rule is the ”forced capture rule”,
with this in place a player has to perform a capturing move if it is a possible move. If two
or more moves are possible he/she can decide which he/she want to perform. This reduces
the number of pieces on the board very fast, resulting in a smaller game-tree and making the
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solving feasibly.
An example of an board can be seen in 2a. With such a 8x8 board and 12 possible pieces
for each player over 5 · 1010 positions are theoretical possible. While this seems to be a large
number it is considered a moderate space complexity and it is very small compared to e.g.
chess with 10120 positions. The decision complexity (the difficulty of making correct move
decisions) is another important dimension for estimating the problem complexity, which is
also moderate for checkers.
Checkers is like Chess a two player game and both players have perfect information.

Figure 1: The Checkers board and set-up used for the solving process. A 8x8 standard chess
board with 12 starting pieces for each player.

(a) (b)

Figure 2: The Checkers board and set-up used for the solving process. A 8x8 standard chess
board with 12 starting pieces for each player.

3 Solving Methods

Before describing the solving method, it has to be defined what ”solved” means. There are
three different grades of the solved state, which where introduced by L. Allis in his dissertation
[2].

• Ultra weakly solved: Only the outcome is known, but not the strategy

• Weakly solved: Outcome and strategy is known if started from the beginning

• Strong solved: Outcome and strategy is known from every position

For finding the solution a brute-force ansatz is used. For a two player game with perfect
information a min-max tree can be created and evaluated. For this it is assumed that both
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players play perfectly. An example of a min-max tree is shown in figure 3b. In this case it is
the turn of white and the player can perform two different moves, then black has two possible
moves for each and so on. For finding the best move series (the series with the least worse
outcome) a backward search can be performed. In a min-max tree a ”good” move for the
player who’s turn it is, returns a high value, while the other play tries to minimize the value.
Thus, this results in min and max-nodes, since the players will decide for the move where the
child has the maximum/minimum. In the case of figure 3b the value of 3 (second leaf node
from the left) propagates to the root which is the game value of this position.
Another way for proofing a position is an AND/OR proof tree. In this case a statement,
in most cases the moving player wins, is tried to proof. A leaf node where the player wins
is a 1 for true. And a 0 for a draw and a lose, since both contradict the assumption of a
win. Therefore, to proof an AND-node every child has to be proven true (similar to the
mathematical AND operation) and for disproving an OR-node every child has to be proven
false (similar to the mathematical OR operation). The value of an expanded internal AND-
node is false if it has at least one child with value false or unknown, otherwise it has the value
true. The value of an expanded internal OR-node is true, if it has at least one child with
value true, unknown if at least one child is unknown and false otherwise. A tree is solved if
the value of its root has been established as either true or false, solved tree with value true is
called proved while a solved tree with value false is called disproved [2].
The overall idea of solving the game can be seen in figure 3a. For every important starting
position (see section 4.2) an complete game-tree is searched until the end game database is
reached. The tree starts with a seed taken from a checkers book for a faster computation.
The better the seed, the faster the computation is, because more possibilities can be pruned
(see section 3.3.1). An OR-node maps to a max-node and an AND-node to a min-node.
The solving method consists out of three components a proof-tree manager, which manages
the tree and creates a hierarchy of the positions which have to be evaluated, the proof-tree
solver, which evaluates the positions and the database for the endgame.

3.1 Endgame Database

The computation of the endgame database started in 1989 with the beginning of the construc-
tion of Chinnok. For the first attempt of defeating Tinsley, Chinnok had only a database for 7
and less positions. For the win in 1994 the positions for 8 and less pieces had been evaluated.
Since the determination of the game value for 8 pieces on the board has lasted already for 2
years, the calculation for more pieces was not feasible. The fast increasing number of possible
positions per pieces count can be seen in figure 4. Starting with 1 piece on the field the count
C can be calculated with

C = (32 + 28) · 2 = 120 (1)

Here the ·2 stands for the two players and the 32 for the possible positions for a king and
the 28 for the possible positions for a normal stone. The normal stone can only stand on 28
positions, because if it would stand on the last line of the field, it would be turned immediately
into a king.
In 2001 the calculation started again and they needed only one month for calculating the
eight piece positions which the last time took 2 years. This was possible because of newer
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Fabian Jäger May 9, 2019

(a) Taken from Checkers Solved [1] (b) Min-max tree

Figure 3: Image (a) shows the overall idea of the solving method. It shows the complete
search space. The numbers from bottom to the top indicates the number of pieces on the
board while the width of the figure indicates the number of possible positions on the board
on a logarithmic scale. The doted horizontal lines outside the oval indicates positions which
are not reachable or irrelevant for the proof. The dark line in the middle is a so called seed a
known strategy which boosts the computation time. The dark area for 10 and less pieces is
the endgame database where all positions have a known game-value. (b) shows an example
of a Max-Min tree.

computers. Thus, the computation for 9 and 10 pieces was finished in 2005.
The endgame database is very important, due to the forced-capture rule. With the rule the
pieces are very fast reduced to 10 or less pieces and the search do not need to be evaluated
any further. This reduces the computation time drastically.

3.2 Proof-Tree Manager

The proof-tree manager maintains the proof tree and search for positions, which needs to be
evaluated further. The positions can be evaluated independently. Thus, the manager returns
hundreds of important solutions which are evaluated by over 50 processors simultaneously.
The list is generated with the proof-number search introduced by L. Allis in his PhD thesis
[2].

3.2.1 Proof-Number Search

The Proof-Number search uses proof-numbers (pn) and disproof-numbers (dn). These num-
bers indicates how many nodes have to be proven or disproven for proving the node which is
evaluated. For calculating these numbers a few calculation rules are introduced in [2]:

• 1) A leaf node, which is a win, has pn = 0 and dp = ∞ because from here zero more
nodes have to be evaluated to proof the leaf and it can’t be unproven.
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Figure 4: The possible positions for the pieces count from 1 to 10. Taken from Checkers
Solved [1]

• 2) A leaf node, which is a loss or a draw, has pn = ∞ and dp = 0 because from here
zero more nodes have to be evaluated to disproof the leaf and it can’t be proven.

• 3) A leaf node, which has a unknown value, has pn = dp = 1.

• 4) The pn of a AND-node is the sum of all the pn of the children since all of then have to
proven for this. The dp is the smallest dp of the children since on is enough to disprove
it.

• 5) The dp of a OR-node is the sum of all the dp of the children since all of then have to
disproven for this. The pn is the smallest pn of the children since on is enough to prove
one.

With these rules the most important nodes can be found. In figure 5 an example can be seen.
The best line is found by selecting at each OR node the child with the lowest proof number
as successor, and at each AND node the child with the lowest disproof number. In figure 6
the pseudocode for such a search is shown.

3.3 Proof-Tree Solver

The proof-tree solver uses two different methods for finding a game theoretic value for a
node and with this solving it. At first Chinnok is searching to nominal search depths of
17 to 23 ply (targeted at 14s) to find a heuristic value for the position. Like many other
game playing computers the alpha beta algorithm is used for this apllication. The algorithm
does a depth-first, left-to-right traversal of the search tree and carries thresholds for pruning
unimportant nodes. It was introduced in 1975 in [3] and is described in more detail in the
following section. Occasionally this results in a proven win or loss (if it hit a known position
from the databases). If no solution has been found the second solver is used (aimed for 100s),
which uses the depth-first proof-number search. The Solver was build from 2001 to 2004 and
computed the rest of the time the results.
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Fabian Jäger May 9, 2019

Figure 5: This proof tree shows the use of the proof-number search for finding the fastest way
of proofing (thick line). The figure can be found in [2].

procedure ProofNumberSearch ( root ) ;
Evaluate ( root ) ;
SetProofAndDisproofNumbers ( root )
whi l e root . proo f != 0 and root . d i s p r o o f != 0 and ResourcesAva i lab l e ( ) do

mostProvingNode := SelectMostProving ( root ) ;
DevelopNode ( mostProvingNode )
UpdateAncestors ( mostProvingNode )

od ;
i f root . prove = 0 then root . va lue := true
e l s e i f root . d i s p r o o f = 0 then root . va lue := f a l s e
e l s e root . va lue := unknown
f i

end

Figure 6: Pseudocode for a Proof-number search, taken from [2].

3.3.1 Alpha-Beta Pruning

The alpha-beta search is a pruning method for reducing (prune) the tree. This decreases the
size of the tree and allows a faster evaluation. The advantage can be seen in 7 in which a
pruned min-max tree is drawn. While evaluating the root node a lower threshold (alpha)
and an upper threshold (beta) a carried along. If someone follows the depth-first left-to-right
rule, the first white node (max-node) take the maximum of its child-nodes and results in a
3, therefore the upper threshold is updated to 3. The the other white node is evaluated but
he has an unknown node. Nevertheless, we know the max-node will have at least the value 5
or higher. 5 is greater than the upper threshold and the parent node will then take in every
case the node with value 3. This is quite logical since the other child has at least the value
5 (or higher) and with this is definitely not the better move for black. The other example in
the tree works the same way but it prunes the tree more drastically. The rule of thump for
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Figure 7: Illustration of the alpha-beta pruning.

the reduction in computation is:
bd → bd/2 (2)

with b the average number of children and d the depth of the tree.
While the whole process is easily written in a recursive form it is possible and necessary to
create a iterative form. The code for this can be found elsewhere [3].

3.3.2 Depth-First Proof-Number

The depth-first proof-number solver is an iterative variation of the proof-number search used
by the proof-tree manager. It differs in the prioritizing of the search direction. The depth-first
variation tries to find a fast end of the tree by pruning branches similar to the alpha-beta
tree. In this case a threshold for the proof-number and the disproof-number are propagated
while searching the tree, pruning unimportant nodes. In other words, df-pn utilizes iterative
deepening with local thresholds for both proof and disproof numbers. This approach is similar
to recursive best-first search in single-agent search [4]. The complete derivation for the df-pn
can be found elsewhere [5]. With the depth first approach a value of the endgame database
is reached fast, giving a non-heuristic value.

3.4 Iteration

Most artificial intelligence programs use iteration depth by depth. In other words they iterate
first overall nodes 1 ply (move) away then 2 plies away and so on. For reaching faster in depth
the manager uses the new approach of iterating on the error in Chinook’s heuristic scores. A
threshold h is introduced. Now, all nodes with a value v < −h is a proven loss and a node
with a value of v > h a proven win. The other nodes in between are then evaluated and
afterwards h is increased to h + ∆ and the process is repeated.
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4 Results

The solving lasted nearly 20 years and a lot of computation was done. Different starting
positions were considered until a result was found. In the following sections describe the
endgame database, the starting positions and errors of the tree.

4.1 Endgame Database

The approximately 1012 positions of the endgame were compressed into 237Gb. This leads to
an average of 154 positions per byte. For this a custom compression algorithm was used [6].

4.2 Starting Positions

(a)

(b)

Figure 8: The figures show the 19 important opening moves for checkers. In professional
checkers the normal checkers game is seen as boring, therefore the first 3 moves are chosen
randomly. This leads to more than 300 moves were over 100 are just permutations of other
and all than 19 can be shown as unimportant with alpha-beta pruning. (a) shows a tabular
with the and (b) the game tree which leads to these position. Both are taken from Checkers
Solved [1].

The normal starting positions are seen as boring in professional checkers. Therefore, the
first three moves are done randomly. This gives over 300 possible starting moves. The number
can be drastically reduced, because over 100 are permutation of other positions and all but 19
can be found to be unimportant with an alpha-beta search. These 19 positions can be seen
in figure 8. In figure 8b a tabular with all 19 important starting moves (column Opening,
numbers correspond to the board from figure 2b), the result for the position (Proof) the
longest line f plies (Max ply) and the number of searches (Searches). In figure 8b an game
tree is shown from the starting board until the important 19 openings. The branches with
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the rotated T indicates pruned sub trees. The first move 09 − 13 produces a draw, because
the next player wants to minimize his/her loss and therefore only the move (22-17) is his
choice in with he get the least worse outcome (a draw, compared to draw or loss for the other
possibilities). From there on the move for the first player is the draw with (13-22). Now for
proofing the draw the other possibilities have to be proven as equal or worse. For the other
starting positions a draw or a loss is possible which are worse than a clear draw, due to their
loss potential.
Additionally, it can be observed, that the checkers game is in most cases a draw or worse for
the starting player (if played with the 3 random moves) and the move series (12-16,24-19,09-
13) even a proven loss, so a slight defenders advantages appears to be in pace in Checkers. It
has to be said that the program assumes perfect play and in some cases it is better to gamble.
In other words, if I have the possibility for a draw or the possibility for a win or loss it can
be better to risk a loss for archiving a win.

4.3 Errors

There are few error sources. They can not occur only through a wrong software but also
through problems in the game tree theory or hardware induced error sources. The most
common error for the game tree is the graph history interaction.

4.3.1 Graph History Interaction

The graph history interaction (GHI) results if the tree gets loops. On one hand it can lead to
longer computation time because the solver runs in loops and o0n the other hand the same
position can be reached with different move combinations. The second problem is easily seen
if we think about a position which can be reached from both players, in other words it is the
same position but the other player has to move. This can change the whole game theoretic
value.
To solve the problem for depth-first proof number, we add path information to the position
whenever a node n is proven/disproven for a path p. If n is later reached via a different path
q, the proof/disproof for n is not used blindly. Thus, an efficient additional search has to
be performed to check if the proof/disproof of n for p also works for n for q. If n is neither
proven nor disproven yet, the position value for n is always used as a transposition [4].

4.3.2 Software Error

The second error which can appear, are errors in the software. While the whole game tree
can not be manually tested, a lot of important game trees/game values have been evaluated
manually and all of them have been proven correct. Additionally, a wrong values is very
unlikely to have a great influence on the positions dozen of plies away.

5 Conclusion

The paper summarizes the solving process of checkers very well. It starts from the beginning
of checkers programs and leads the way towards the solution. It gives also a nice insight
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in the ideas of research in the beginning of artificial intelligence. It shows also the problem
of computer science, that it is often ahead of its time. For example the calculation of the
database and the min framework for the proof tree solver was known for decades, but the
computation was not feasible at this time.
Checkers a program with moderate space complexity took around a decade to be calculated,
with over 50 processors simultaneously. This shows the problem to solve chess in such a
way, because chess has not only64 instead of 32 possible fields, but also more different typs
of figures. This leads to a number of possible positions of the magnitude of the checkers
positions to a power of 3.
Besides the large computation time, the brute-force ansatz shows its efficiency, because it
can be applied to solve games with out knowing the rules. With this method other games
example given: Tic-tac-Toe and 4-winns can be solved, too.
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