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Abstract

Autonomous driving is one major focus in the automobile industry and technical re-
search. Since 2010 there were many research projects on autonomous driving. Also,
research is doing well with some autonomous vehicles currently able to drive by them
self on public roads. Since industrial projects seem to be more sophisticated, they are
very poorly documented and published. Since the “normal” task on driving in pub-
lic roads with hundreds of obstacles to recognize and analyze, autonomous cars need
special implementations for analyzing and managing dangerous situations. This report
presents two approaches of dealing with dangerous situations, also in contrast with the
ability to make an “ethical” decision. Furthermore a study is presented that shows that
many people are aware of the danger of “handing over the steering wheel”, but show
less willingness to buy if the car is able to injure it’s passenger rather than pedestrians.



1 Introduction

Autonomous vehicles (AV’s) share an enormous potential to solve many traffic prob-
lems. They can reduce ecological damage, avoid car accidents and reduce traffic jams.
Vehicle to vehicle communication (V2V) is a big advantage to support this goals. This
allows AV’s to share their current driving data with surrounding cars. This is a nec-
essary concept to support optical environment recognition (like lasers, radar and cam-
eras) and to avoid recognition errors if sensors are disturbed or deliver inconsistent
data. Since AV’s are still very rare on public roads and V2V is not available, driving
maneuvers must rely on optical sensor data and others like Global Positioning System
(GPS) and compass data. To avoid accidents between AV’s and other road users and
objects on the road environment, these sensor data must be very precise and consistent
with each other. For simplicity with respect to the topic, this report assumes always
correct from the environment recognition sensors.

One major problem in autonomous driving is the avoiding of accidents. A human
driver must consist a driving test of public roads to confirm (s)he is able of being
aware of dangerous situations on public roads. Werner von Siemens said 1880, that
the prevention of accidents must be a commandment of human reason not a precision
of the law. Computers indeed can only follow rules and laws a programmer told them,
or they learned by itself. Therefore, AV’s need to have an intelligent understanding
of driving on public roads and the danger that they might represent. This intelligence
need to be implemented in an accidence avoidance system in AV’s. Since autonomous
driving is already a complex task, accident avoidance needs to predict many scenario
outcomes and possible driving maneuvers for the own and other vehicles.

In [1] a safety system for AV’s is presented. The authors work on the Stadtpilot Project
of TU Braunschweig which introduced one the first ever AV’s on public roads. Also,
security requirements and a formal definition of a safe state is presented. The results
are presented in chapter 2. In [2] the authors compare different possible AV scenarios
with a mathematical representation of a cost function. This function receives all sensed
data as an input and creates the cost of this scenario. Tis approach is presented in
chapter 3. In [3] a different approach uses predefined rules and statistics to map integer
values on scenario outcomes. This method uses a consequence engine which is also
able to detect when rules can be broken to protect the driver. This approach is presented
in chapter 4. In [4] a study is executed which determines the buying behavior and the
acceptance of AV’s being able to hurt people in order to protect others. The results are
presented in chapter 5.
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Because many ethical aspects must be considered, which cannot be testes in the real
world, a common approach in AV design is the execution of thoughtless experiments.
For this reason, this work contains a lot of small examples.

2 Safe State

As humans, we have a sense for recognizing incoming danger. AV’s only have data
from environment sensors. Through collision detection it’s possible to calculate if an
AV will hit another object or not (or vice versa). Although modern classification al-
gorithms can detect specific objects. With object recognition and collision detection,
AV’s can calculate whether hitting an object is safer than try to move around it. Con-
sider the example of a deer that runs over a street. An AV’s has now to decide either
to hit it or move around it. With these algorithms and the current driving data (ve-
locity, steering angle, break conditions,...) the AV can calculate through the laws of
physics how hard the impact will be when hitting the deer. The value of impact can
be compared with the danger when moving around the deer. Two main parameters
are important in this case, velocity and road friction. Both values can be measured by
sensors and the AV can calculate how likely the vehicle will corner around the deer. Of
course, parameters like traffic on opposite lanes and the capability of the deer to move
in the same horizontal direction must be considered here.

The AV must calculate those dangers anytime it’s driving on public roads. Mostly
objects (here: other cars, pedestrians...) will be recognized as harmless because they
drive in the same directions and the AV’s keeps enough distance. In this case, the
incoming danger1 is under a given threshold2. This state is called a Safe State. The
goal of AV’s is to always operate in this safe state.

2.1 Requirements

The safe state can be represented by several safety requirements. These requirements
can be can be detected during the operation of the AV on public roads and transferred
into a mathematical cost function. In [1] safety requirements are defined as follows:

A) Performance describes the accuracy of sensor systems. This includes the GPS

1Incoming danger: Hazards from other road users on the AV.
2Danger threshold: limit “how much” danger is acceptable
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which delivers the current position of the AV in a 3D world map. Since there
is a known deviation, the position can be corrected by recognizing road signs or
junctions with optical sensors. Grip value measures how safe the AV can per-
form on the road. This includes the current road condition (e.g. pebble roads are
much more unsafe than tarmac roads) and the current weather condition which
influences the road condition (e.g. wet roads got less grip than dry roads). The
vehicle environment is captured by environment sensors already mentioned in
section 1. Therefore it’s important that all sensors deliver data in appropriate3

intervals. These intervals are managed and monitored by the System Operation
Status Unit which also supervises other vehicle sub systems like the electrical
system and captures their heartbeats. On basis of these heartbeats and the actions
performed by the car, the System Reaction Time is calculated. This includes the
heartbeats of all sensors, systems and the time the vehicle needs to react e.g. the
time which elapses from detecting an obstacle on the street until the car starts to
drive around it.

B) Functional limits describe actions and maneuvers the car should always be aware
of to perform, keeping itself in a safe state. Most of them can be derived from
a usual car trip with a normal car without an automatic driving feature. The
modification of driving parameters ensures that the car is able to steer itself at
all time. Also, it must be able to brake, accelerate and keep safety distances.
Furthermore, the own mission with predefined comforts is important. An ambu-
lance needs to have a shorter time to target than a taxi and can therefore reduce
safety distances and the importance of traffic laws. This is directly connected
with the modification of driving maneuvers which executes a parameter change.
It also planes how feasible a maneuver is, e.g. if a lane change seems a good
option due to traffic jams but the lane to change to is also blocked. If there is a
current danger detected on the road, safety maneuvers are enforced to prevent the
AV from a dangerous situation or even a crash. Sometimes there are maneuvers
that should be avoided to keep the AV in a safe state, this is called prohibition
of driving maneuvers and checks in the first place, if the current maneuver could
result in a dangerous situation. In the second place, it checks the consistency of
different sensor data among themselves as their heartbeat. If some sensor data
are not consistent with each other (e.g. GPS shows the current position in “First
Street” and the camera captures a road sign that said “Mishigan Avenue”) this is
a hint for a failure of one of these systems and ran result in a bad driving route
or worse.

C) The Risk level is a result from all data collected by sensors and cameras. With
a appropriate heartbeat these systems deliver data from surrounding objects. By
comparing differences in two or more snapshots of the environment4 moving
directions and velocity of other road users can be calculated. Collision detection

3in “safe” regions these intervals can be decreased to safe power.
4Environment snapshot: Resulting data from all sensors.
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algorithms can now work out, how likely one of these objects may hit the AV
or vice versa. Based on this likelihood, the incoming respectively the outgoing
risk can be calculated. This risk level is used to project the current situation on
numerical values and compare these with a predefined threshold. If this threshold
is exceeded, a safety action must be performed.

2.2 Ethical Strategies

No matter how good and how “intelligent” AV’s in the future will get, once there will
be a situation where an algorithm must decide hitting, hurting or even killing one of
two persons. To act in an ethical and nonracial way means, to not discriminate anyone
on public roads. Therefore, there remain a few strategies to follow:

• Minimizing collateral damage is summing up all injuries and damage to prop-
erty. The optimal result is chosen by the scenario with the least damage to all
surrounding objects and humans.

• Cause least harm protects human over objects. This may result in the AV hitting
other cars to protect pedestrians which may jeopardizes the occupants.

• Protect occupants can be interpreted that the AV will never choose any scenario
that might cause injuries to an occupant. This could be scaled to a model where
the AV can damage itself but not injuring occupants (e.g. at low speeds) to
protect pedestrians.

3 Cost function

To decide which action might be safest or the most ethical one, several scenarios must
be created and compared. Cost functions accumulate a bunch of scenarios that could
occur. All parameters determined from safe state requirements are considered for the
cost function. It also includes the risk and probability of an event, the scope of possible
reaction scenarios1 and also further effects on other involved people or objects. Figure
3.1 shows an example of parameters going into calculation for finding a “best” sce-
nario. Blue arrows indicate parameters and actions the AV oversees and can influence.
Green arrows are parameters from the AV environment.

1Reaction scenario: Reaction of another road user on an AV’s action
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Figure 3.1: Example for input parameters for a cost function. Velocity representing a pa-
rameter which is controlled by the AV, it also could be used road for solving the
problem of finding a solution. On the other hand, road friction and the position
and velocity of other road users is given and probably constant.

Finding a best scenario means this is mathematically the best solution to this problem,
which does not imply it is also the best ethical solution. Further, a cost function can
be represented mathematically by a N dimensional function, with N as the number
of parameters. Thus, with the big number of parameters that occur on public roads,
this problem becomes very complex. Since this is a “basic” problem of minimization,
this problem is solvable but it might need much time. Driving on a public road and
reaching a dangerous situation, an AV does not have that much time to calculate al-
ternative scenarios. Therefore, some parameters must be decreased in priority. First,
these parameters must be classified by their importance against the passengers and the
surroundings. In dangerous situations, it’s mostly insignificant how fast the AV comes
to its target rather then get to its target without causing any harm. In a “normal” situ-
ation the time to target is on behalf of the passengers. So there must be a distinction
which parameter is of interest in which situation.

Table 3.1 lists some parameters with their weights in a dangerous and a normal situa-
tion. Traffic laws are constantly the same, they do not change during driving and may
need to be updated in each period. They have a high priority in normal situations to
make sure that all road users have the same rights. However, in dangerous situations,
restrictions can be neglected. E.g. by crossing a straight line to avoid a crash. Road
friction is out of the area of influence for the AV. It can be seen as a constant because it
matters all the same and does not change that often2. In addition, there is the number
of persons injured or dead which are always weighted very height.

These parameters can be classified into three groups:

1. Constants like traffic laws and road friction. These are defined by the envi-
ronment and are predefined or easy to monitor and do not change with a high
frequency. They can partly be neglected in danger situations, e.g. the traffic
law example above. On the other hand, road friction is important in calculating

2assuming a constant weather and street monitoring
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Table 3.1: Weight of driving parameter in different situations

Parameter weight in danger situation weight in normal situation

Traffic laws low hight
Road friction const const
Time to target low hight
Distance to others low hight
Property damage in $ low hight
# persons injured hight hight
# persons dead hight hight

stopping distances.

2. AV Responsibilities puts the AV in charge of executing “best practices” on the
road. Including keeping distances to other cars, respect road signs and veloc-
ity limits. Also, the mission of the AV matters here, see the ambulance – taxi
example in item B).

3. Scenario impacts are the prediction of a scenario outcome. Not only that these
parameters have the biggest weights, it’s very hard to predict how many people
will get injured during a given scenario.

Figure 3.2 models a cost function with the parameter “path deviation” in a two dimen-
sional grid for visualization.

Figure 3.2: Cost function for one param-
eter, path deviation. Mapped
into a 2D Grid. [2]

The deviation can be calculated by a func-
tion J that sums up the squared errors over
a given time interval. These can represent
the past and the predicted future.

J =C1ω1

N

∑
i=1

e(i)2 (3.1)

Wit C1 as weight, ω1 as probability and e(i)
the deviation.

The application of a cost function is not what nowadays can be called “artificial intel-
ligence”. It’s very easy to knock it out. E.g. by blocking the road with an obstacle that
does not represent any danger to an AV. A human car driver would probably swerve
around it through the adjacent lane or the emergency lane. The AV would break before
the object and wait until it’s removed because a drive through the adjacent lane may too
dangerous and breaking the law as it is while driving around over the road shoulder.
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4 Consequence Engine

In [3] the authors construct a system that should can break laws to achieve an ethic
justifiable goal. This system is called a Consequence Engine and is based on a set of
logical rules and a code written in Python. The approach has been tested and verified
with a couple of e-puck robots in isolated scenarios. These isolations protect the robot
of other influences as they can occur on public roads. The architecture of the conse-
quence engine in figure 4.1 is similar to the cost function. The robot got sensors that
are monitored in the object tracker and the robot controller. The consequence engine
contains a model of the world (covering all surroundings) and a robot model (compa-
rable with item B) in section 2.1). The models and the robot controller create possible
actions, based on the surrounding objects and the own capabilities. These actions pass
the Action Evaluator and the Safety/ethical Logic Unit (SELU).

Figure 4.1: Architecture of the consequence engine by [3]

The SELU rates the outcomes of actions with an integer value. In an example where
a human is moving on towards a hole and the robot is standing equidistant to the hole
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and the human. This experiment is sketched in figure 4.2. The robot has the possibility
to drive itself into the hole or hit the human to protect him of driving into the hole.

Figure 4.2: Experimental setup with a human moving towards a hole and a robot trying
to protect the human

Hitting the human is forbidden by predefined rules. Through hitting the human to pre-
vent him from further harm, such actions could be allowed. By mapping integer score
values to action outcomes, it can be determined which action results in the smallest
harm for the human. Mathematically a consequence engine can be described as the
tuple

〈
ce,ag,ξ ,A,An,SE,EP, fES

〉
. With the components:

• ce as name of the consequence engine and ag the name of the robot
• ξ as the surrounding environment
• A as a list of currently applicable actions
• An as a subset of A with predictions of outcomes
• SA as a sorted list of An, for the most ethical actions
• EP as a ordered list of surrounding objects and their priority of ethical outcomes
• fES as a map for outcomes assigned to an integer value.

Figure 4.3 shows the steps to find the most ethical action to perform. Therefore, the
tuple representation is used and a set of functions is executed.

Simulate
environmaten

Evaluate
outcomes

Filter actors

〈
ce,ag,ξ ,A,An,SE,EP, fES

〉
Figure 4.3: Determination of ethic actions from a robot

These steps are described by:

10



1. Simulate environment
To predict outcomes from actions the operational rule equation (4.1) is defined.
A simulation is made of a possible action a in the current environment ξ , this is
expressed as ξ .model(a).

An′ = {
〈
a,os

〉
| a ∈ A∧os = ξ .model(a)}〈

ce,ag,ξ ,A,An,SA,EP, fES
〉
→

〈
ce,ag,ξ ,A,An′,SE,EP, fES

〉 (4.1)

Which creates a list An′ that contains tuples
〈
a,os

〉
with os as an outcome for

a specific actor. In [3] these tuples look like e.g.
〈
human,hole

〉
which would

indicate the human has fallen into a hole. However, the person could also had
jumped over the hole or stopped before the hole. Therefore an additional verb is
needed here to create precise scenarios, not only ranked by an integer1.

2. Evaluation of outcomes
To ensure that the outcomes of actions are ethical reasonable, the recursive func-
tion fep(.) creates a subset of applicable actions. It filters the list T by the best
ethical options for every included human while the object h represents the high
priority human.

SA′ = fep(EP,An, fES,A)〈
ce,ag,ξ ,A,An,SA,EP, fES

〉
→

〈
ce,ag,ξ ,A,An,SA′,EP, fES

〉 (4.2)

fep([],An, fES,SA) = SA
fep(h ∈ T,An, fES,SA) = fep(T,An, fES, fme(h,An,FES,SA))

(4.3)

3. Filtering outcomes
In the last step, a filtering is done for which of the involved actors are sorted out
by their priority2.

fme(h,An, fES,A) ={a|a ∈ A∧∀a′ 6= a ∈ A.

∑〈
a,
〈

h,out
〉〉
∈An

fES(out)≤ ∑〈
a′,
〈

h,out ′
〉〉
∈An

fES(out ′)} (4.4)

All outcomes out for every action a and every involved actor h are summed up.
Finally the smallest sum is defined by the most ethical solution.

1Integers are perfectly for computer understanding. The addition of an additional verb is mandatory
for interacting and communicating with humans, even on a low grammatical level.

2This sounds like “valence” or “political importance”, actually it means the priority of danger. Mostly
dangered person first, unconcerned person last.
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5 Conclusion

In [4] a study is presented where people were interviewed and asked different questions
about the morality of sacrifice, also in dependence of the relationship to passengers.
Further, the behavior of buying a AV that may sacrifices its passenger or protects its
passenger and state regulations where asked. Results show that most people agree with
the setting that AV’s should minimize the overall damage. Furthermore, if the law does
not regulate whether a AV should protect passengers or sacrifice, most people would
by the protective version, but wish that others by the sacrifice version. This implies a
major ethical problem when AV’s are launched on a big market.

This report gave a short overview of the requirements for an autonomous driving car
and the systems that try to ensure the safety of occupants, pedestrians and other road
users. However, this includes a huge consideration of ethic arguments, guidelines and
public law. Due to the strict bisection of industry and research, most of the AV on the
streets today are built by industry under nondisclosure. Therefore, there are less publi-
cations from state of the art AV’s like from Google or Tesla. Nevertheless, two methods
have been presented that use sensing data and try to calculate the best ethical action
to perform. Both do not seem very intelligent at all. Considering the current research
on neural networks and trainable algorithms, a straight forward approach would be to
train AV’s from human drivers. This might be ideal for urban and highway driving, but
humans may not always get the right decision in accident situations. Therefore, these
situations must be trained manually. On the other hand, accidents are so complex and
hard to rebuild, the question would be if a neural network can find a similar accident
and try to perform better than that.
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