
Report: ”What is Relevant in a Text Document?”:
An Interpretable Machine Learning Approach

Author: Christoph Schaller

Nr. 3369103
Course: Explainable Machinelearning

1. Motivation

Rising capabilities of machine learning algorithms and neural networks
make it possible to analyse, annotate and process data in a magnitude far
above human ability. But can we trust these algorithms? How is it possible
to make sure, that the decisions to categorize and classify documents are
based on valid features and not on features only present in our training and
testing sets? As a small oversight in preprocessing or acquisition of data
can lead to failure in a real classification task by promoting features that
are overrepresented in the training and test data but usually not found in the
wild. Thereby it is good to know on which features the network or algorithm
bases its decision. A way to extract this information from a trained model
is layer-wise relevance propagation. With this technique it is possible to
visualize and explain the predictions of complex non-linear classifiers. The
Paper ”What is Relevant in a Text Document?”: An Interpretable Machine
Learning Approach [1] of Leila Arras et al. brings this technique from image
recognition to text categorisation. And tries to find measurements to tell
how good a machine learning model explains a text category.

2. Related Work

There are different approaches to explain the decisions a machine learn-
ing model makes and what kind of features it depends these decisions on.
While some approaches aim to explain the inner workings of single algo-
rithms or networks, others try to explain different models by using random
sampling but impose an additional computational cost[2][3][4]. The method
chosen by Arras et al. called LRP short for layer-wise relevance propa-
gation is an approach applicable to different models including deep neural

June 30, 2018

networks and support vector machines. LRP was beforehand used to display
heatmaps to highlight important areas in images for computer vision.[1]

3. Predicting the Class of a Document with different Approaches

3.1. Embeddings

An important difference between the CNN and SVM are their respective
word embeddings. While SVM is using a bag of words model, the CNN
is, in this case, using a continuous bag of words model. The BoW (bag of
words) model is representing the corpus of documents its trained on by a
simple set of (usually) all context words contained in it, single documents
are then represented as a vector where each word is represented by how often
it occured in the document. Compared to the BoW model the CBoW model
is a bit more complicated, here for a single word that should be represented
as a feature all context words in its vicinity, so in a window of a fixed size are
used. These context words are then used as features to train a shallow single
layer neural network to predict a word by the context word often found in its
surroundings. The vectors for the respective words are then taken from the
last layer of the shallow network and used as embeddings. This allows the
embeddings to model the meaning of certain words, as words with a related
meaning are often found in the neighborhood of the same group of other
words. This works so well that it is possible to convey certain meanings in
a vector, taking a vector between the embeddings of the words ”man” and
”king” and applying it to the embedding for the word ”woman” will result
in a location near the embedding for ”queen”. So while the CNN model can
take advantage of the encoded semantic similarity of the CBoW embeddings
the SVM models BoW embeddings are equidistant in its semantic space.[1]

3.2. CNN

To train the CNN model for text document categorization first every
word in a document gets mapped to its word2vec (CBoW) vector. It is
important to note that the CBoW embeddings were not trained on the doc-
ument corpus but on a larger dataset containing far more different words
and a larger amount of text. The document representation a matrix of the
number of words times the size of the embedding vectors, is then fed into the
convolutional neural network which convolutional layers are filtering down
the input data. Subsequently the next layer of the network computes a
maximum for each representation over all dimensions of the document. At
the end all the now pooled features are fed into a logistic classifier returning

2

the unnormalized log-probabilities for all possible document classes. Af-
ter converting these outputs with a softmax function to probabilities, the
classification is done.[1]

3.3. SVM

For the training of the SVM classifier, the bag of words embeddings
are used, for this each document is represented by a vector as long as the
size of the training data vocabulary. This means that every word, in all
documents, is in this set. For a single document each word is mapped as
its term-frequency-inverse-document-frequency score. This is the frequency
of the given word in the current document, compared to the inverse of the
words frequency in the whole corpus. TF-IDF increases the weight of words
which are meaningful in the context of the whole corpus and decreases the
weight of words that are very common throughout all of the documents.
The vectors of TF-IDF scores are then normalized to euclidean norm and
using all the document vectors, hyperplanes separating different document
classes are learned. This results in a linear prediction score for each class of
documents.[1]

4. Decomposing the Learning

The importance of single features for the classification of a document
can be calculated by using layer-wise relevance propagation. As this method
can be used to deconstruct convolutional neural networks as well as support
vector machines, it is possible to directly compare the results for both ap-
proaches. This works by redistributing the score that caused a classification
onto the respective input neurons via backward propagation until the input
space is reached and the scores can be mapped to input features.[1]

4.1. Decomposing the CNN with LRP

To decompose the inner workings of the CNN based classifier the un-
normalized classification scores are used to start, then for each layer of the
network, according to their relevance in the classification a score is assigned
to each of the layers neurons. So for each CNN neuron xi,t, xj,t, xj , xk there
is a relevance score Ri,t, Rj,t, Rj , Rk, it is important to note that the rele-
vance per class mapped to the neurons on each layer is the size of the score
the classifier predicted for the class, this can be expressed as:

∑
i,t

Ri,t =
∑
j,t

Rj,t =
∑
j

Rj =
∑
k

Rk (1)

3

The relevance redistribution is then formalized by introducing an new
concept, how much relevance is propagated from a neuron b to a neuron a
in the next lower level is indicated by messages. The top layer relevance
vector is then set as:

∀k : Rk = Xk · δkc (2)

While the messages in the top fully-connected layer are distributed by the
following weighted formula, where zjk represents the share of each neurons
contribution to the upper neurons weight in the forward propagation. A
small stabilizing term ε = 0.01 is then added to prevent the denominator
from nearing zero and avoid too large or small relevance messages.

Rj←k =
Zjk∑
j Zjk

Rk (3)

The calculated distribution of messages is then pooled onto the respective
neurons with:

Rj =
∑
k

Rj←k (4)

And the relevance scores Rj are propagated through the max-pooling
layer with a ”winner-takes-all” redistribution to acknowledge the rule used
for backpropagation while training.

Rj,t =

{
Rj if t = argmaxt′Xj,t′

0 else
(5)

For the final convolutional layer the weighted redistriubtion is done with:

R(i,t←τ)←(j,t) =
Zi,j,τ∑
i,τ Zi,j,τ

(6)

4

Which is similar to the distribution of messages in a fully connected layer
except for the added notational complexity to make up for the convolutional
nature of the layer. The messages are then pooled onto the input neurons
with:

Ri,t =
∑
j,τ

R(i,t)⇐(j,t+τ) (7)

[1]

4.2. Word Relevance for the CNN

As the relevance for predicting a certain class is distributed onto the
input features, it still needs to be pooled onto the words represented by the
embeddings to obtain a per word relevance score.

Rt =
∑
i

Ri,t (8)

is pooling the relevances onto all dimensions of the CBoW vector.
Besides that it is possible to use these word relevance scores to condense
the semantic information of a text document to a single vector in the same
vector space as the CBoW vectors. This is done by linearly combining the
vectors of the word in the document with what is called word-level extraction
by Arras et al.:

∀i : di =
∑
t

Rt · xi,t (9)

To avoid this step of word-level pooling it is possible to extract only the
relevant subspace for each word, adressing the problem of word homonymy
and resulting in a finer grained semantic representation of the summarized
document by what is called element-wise extraction by Arras et al.:

∀i : di =
∑
t

Ri,t · xi,t (10)

[1]

5

Figure 1: Diagram of a CNN-based interpretable machine learning system consisting of a
forward processing that computes for each input document a high-level concept (e.g. se-
mantic category or sentiment), and a redistribution procedure that explains the prediction
in terms of words. Arras et al. [1]

4.3. Decomposing the SVM with LRP

The decomposition of the support vector machine is compared to the
decomposition of the CNN much simpler. As the SVM with BoW embed-
dings is only a linear predictor the relevance distribution for a class c can
be computed with the following formula.

Ri,t =
∑
j,τ

R(i,t)⇐(j,t+τ) (11)

Where D is the number of non zero entries of the vector x.[1]

4.4. Document Summary for the SVM

To summarize a document with the results of the SVM classifier it is
possible to use the following formula:

∀i : di =
∑
t

Ri · x̃i (12)

For further accomodation of the two document summarization methods
for the CNN it is also possible to swap Rt in the formula for the word-level
extraction with the inverse document frequency score of the document and
swap Ri in the element-wise extraction formula for a TF-IDF score.[1]

6

4.5. Sensitivity Analysis as a Way of Decomposing ML-Models

As a Baseline to the layer-wise relevance propagation Arras et al. use
sensitivity analysis. Each input feature is assigned a score representing the
steepness of the decision function in the input space. This local steepness is
a weak representation of the actual function value that is the main interest
when decomposing the inner workings of a machine learning model.[1]

5. Measuring the Quality of Word Relevances

The methods to obtain a relevance distribution over words are evalu-
ated by intrinsic validation, while the performance of the machine learn-
ing algorithms decompositions to explain a model is analyzed by extrinsic
validation.[1]

5.1. Intrinsic Validation

The quality of the word relevance scores is measured by creating and
analyzing heatmaps of words labeled important for a class in a document
by the decomposition algorithms. Another way to evaluate the quality is
composing a list of the most important words for a class over all documents,
as this allows to inspect which words are taken as the most important ones
for the general classification. To quantify the relevance of a word across
different classifiers and decomposition algorithms Arras et al. remove words
from the document and measure the impact on the classification scores.
The idea behind this is, that words more important to the classification
process will impact the scores more than words that are not as important
to the classification. By removing words in different orders, for example
declining from the word tagged as most relevant or ascending from the word
tagged most irrelevant it is possible to analyze how precise the decomposing
algorithm is in classifying the importance of words for a single machine
learning approach.[1]

5.2. Extrinsic Validation

Extrinsic validation is used to compare the explanatory power of different
machine learning approaches, this is not possible with the method of intrinsic
validation, as the removal of words from documents affects different machine
learning algorithms and neural networks in different ways. Thereby Arras
et al. define a model as more explainable if its word relevances are more
semantic extractive. They define this as helpful to solving semantic related
tasks such as the classification of document summary vectors. Arras et al.
define three steps to analyze a decomposed model this way.

7

• First they generate document summary vectors for all documents in
the test set, the predicted class is used as the target class for the
decomposition.

• Second the document summary vectors are normalized to euclidean
norm and a K-nearest-neighbors classification of half the vectors, with
the other half as neighbors, is done. The neighbor votes are weighted
uniformly and the classification is done for different K.

• Finally the second step is repeated for ten random data splits and
the mean KNN classification accuracy for the best hyperparameter
K is set as explanatory power index or EPI. If the explanatory power
index is high, the better the machine learning model and the respective
decomposition algorithm are, in explaining the model.

Arras et al. claim that using the KNN as an external classifier allows them
to objectively compare different machine learning models. To analyze their
density and the local neighborhood structure of the semantic information,
that was extracted with the document summary vectors.[1]

6. Results and Evaluation

6.1. Document Classification

To analyze the performance of the different machine learning approaches
to classify documents, Arras et al. compare three CNNs with different fil-
ter sizes and the support vector machine with bag of words embeddings.
The dataset Arras et al. use for training and testing is the 20Newsgroups
dataset, which consists of newsgroup posts that are evenly distributet be-
tween 20 different classes. In the preprocessing, headers are removed from
the documents and the text is tokenized with NLTK (natural language
toolkit). After tokenization, only words containing alphabetic characters,
hyphens, dots and apostrophes and words containing at least one alpha-
betic character are kept, this removes punctuation, numbers and dates.
Additionally, but only for the SVM classifier all words are converted to low-
ercase to allow compatibility with the bag of words embeddings. Finally the
first 400 tokens in a document are used, this is done to simplify training even
if the models could theoretically work with documents of any size. While
the SVM uses a BoW of the words of all documents the CNNs CBoW em-
beddings originate from 300-dimensional freely available word2vec embed-
dings, words that are not in the vocabulary are simply initialized as zeros.
The SVM is tuned with tenfold-crossvalidation but Arras et al. perform

8

no grid search to fine tune the hyperparameters of the CNN classifier and
stopped when obtaining reasonable results. [1]

Table 1: Performance of the different classifiers.

ML Model Test Accuracy (%)

Bow/SVM (V = 70631 words) 80.10
CNN1 (H = 1, F = 600) 79.79
CNN2 (H = 2, F = 800) 80.19
CNN3 (H = 3, F = 600) 79.75

6.2. Identifying Relevant Words

Arras et al. compile the results of the decomposition of the SVM and
CNN models into heatmaps, the documents chosen for this are part of the
classes sci.space and sci.med. Analyzing the heat maps the words considered
important by the CNN appear to be much sparser than the words considered
relevant by the SVM, additionally the words considered important by the
SVM are mostly insignificant words like the, is, of that appear in great
number in every document while the most important words for the CNN
are mainly semantically meaningful words. This can be explained by taking
into account that for the SVM relevance values are computed for the whole
bag of words feature, relying completely on local and global word statistics,
while the CNN can use the words position, neighborhood and the knowledge
encoded in CBoW embeddings to its advantage.

To get the words deemed most important for the classification of a certain
class Arras et al. set a class as the target class for decomposition of a model
and decompose for all documents in the test set. From the resulting words
the most relevant thirty are selected to represent the class. Again it is visible
that SVM assignes relevance to insignificant words. The underlined words in
the figures are not present in the training set but are related to similar words
in the training corpus and thereby get relevance distributed onto them by
their closeness in the CBoW vector space. As this is not possible with the
BoW embeddings of the SVM there are no underlined words in the tables
for the SVM.[1]

9

Figure 2: LRP heatmaps of the document sci.space 61393 for the CNN2 model. Positive
relevance is mapped to red, negative to blue. Arras et al. [1]

6.3. Document Summary Vector

Comparing the different document summary vectors it is possible to
clearly differentiate between summary vectors created by different methods.
While the documents summarized with uniform or TFIDF are clumped
together and clusters are barely discernible. The clusters formed by the
summary with sensitivity analysis decomposition are clearly separated and
the clusters formed by documents summarized with the layer-wise relevance

10

Figure 3: LRP heatmaps of the document sci.space 61393 for the SVM model. Positive
relevance is mapped to red, negative to blue. Arras et al. [1]

propagation decomposition are the most clearly separated ones. This sug-
gests, again that LRP provides more powerful semantically extraction than
sensitivity analysis, but SA is still superior to TFIDF and uniform semantic
extraction.[1]

6.4. Quantitative Evaluation

Analyzing the results of the extrinsic validation shows the impact that
the deletion of words deemed important or unimportant have to the classifi-
cation. Deleting words deemed important in correctly classified documents,
causes LRP to lose accuracy first rapidly and then in a slower pace, while SAs
accuracy loss almost comes to a halt after a significantly shorter initial drop.

11

Figure 4: The 30 most relevant words per class for the CNN2 model listed in decreasing
order of their relevance (value indicated in parentheses). Underlined words do not occur
in the training data. Arras et al. [1]

Figure 5: The 30 most relevant words per class for the BoW/SVM model listed in de-
creasing order of their relevance (value indicated in parentheses). Underlined words do
not occur in the training data. Arras et al. [1]

This indicates that LRP is able to identify relevant words better and more re-
liable.
A similar behavior is seen when deleting the least relevant words from
wrongly classified documents, while LRP gains accuracy in a first steep
and later declining pace, SA is gaining almost as little accuracy as the ran-
domized baselines. All in all LRP outperforms SA and the randomized
baselines in every task. Another interesting discovery with the extrinsic val-
idation method is the difference between varying filter sizes of the CNNs,
as networks with larger filter sizes are more sensitive to word deletions. Ar-
ras et al. guess that this is the case because the meaning of surrounding
words becomes less obvious to classifiers when words are deleted in their
neighborhood.[1]

12

Figure 6: KNN accuracy when classifying the document summary vectors of half of the
20Newsgroups test documents (other half is used as neighbors). Results are averaged over
10 random data splits. Arras et al. [1]

6.5. Explanatory Power

Applying the method proposed to measure explanatory power, Arras
et al. are abled to show that the LRP decompositions with element-wise
summarys of CBoW vectors significantly outperform the other approaches
when comparing the explanatory power index. While the performance of
LRP is still better than the respective non element-wise SA and TFIDF
document representation.[1]

13

Semantic Extraction Explanatory Power Index (EPI) KNN parameter

word2vec/CNN1 LRP (ew) 0.8045 (0.0044) K = 10
SA (ew) 0.7924 (0.0052) K = 9

LRP 0.7792 (0.0047) K = 8
SA 0.7773 (0.0041) K = 6

word2vec/CNN2 LRP (ew) 0.8076 (0.0041) K = 10
SA (ew) 0.7993 (0.0045) K = 9

LRP 0.7847 (0.0043) K = 8
SA 0.7767 (0.0053) K = 8

word2vec/CNN3 LRP (ew) 0.8034 (0.0039) K = 13
SA (ew) 0.7931 (0.0048) K = 10

LRP 0.7793 (0.0037) K = 7
SA 0.7739 (0.0054) K = 6

word2vec TFIDF 0.6816 (0.0044) K = 1
uniform 0.6208 (0.0052) K = 1

BoW/SVM LRP 0.7978 (0.0048) K = 14
SA 0.7837 (0.0047) K = 17

BoW TFIDF 0.7592 (0.0039) K = 1
uniform 0.6669 (0.0061) K = 1

Table 2: Results averaged over 10 random data splits. For each semantic extraction
method, we report the explanatory power index (EPI) corresponding to the maximum
mean KNN accuracy obtained when varying the number of neighbors K, the corresponding
standard deviation over the multiple data splits, and the hyperparameter K that led to
the maximum accuracy. Arras et al. [1]

7. Conclusion

Arras et al. are able to show what layer-wise relevance propagation is
capable to achieve when applied to machine learning models for text classi-
fication and propose with their methods of intrinsic and extrinsic validation
powerful methods to analyze different classifiers and the methods to de-
compose them. Allowing a glance behind the facade of CNNs and SVMs,
resulting in easier understanding and increased explainability of the ana-
lyzed machine learning models.[1]

[1] L. Arras, F. Horn, G. Montavon, K. Müller, W. Samek, ”what is rele-
vant in a text document?”: An interpretable machine learning approach,
CoRR abs/1612.07843 (2016).

14

[2] E. Strumbelj, I. Kononenko, An efficient explanation of individual clas-
sifications using game theory 11 (2010) 1–18.

[3] M. T. Ribeiro, S. Singh, C. Guestrin, ”why should I trust you?”: Ex-
plaining the predictions of any classifier, CoRR abs/1602.04938 (2016).

[4] R. Turner, A model explanation system: Latest updates and extensions
(2016).

15

