
Name: Frank Gabel

Course: Applied Computer Science

Student number: 3537204

Date: July 10, 2019

Artificial Intelligence for Games: Seminar

Some studies in machine learning using

the game of checkers
Arthur L. Samuel (1959)

Frank Gabel

Contents

1 Introduction: History and Rules 3

1.1 History . 3

1.2 Rules . 3

1.3 The suitability of checkers for early AI . 4

2 Some studies in machine learning I (1959) 5

2.1 Samuel’s general approach to solving checkers 5

2.1.1 The mini-max and alpha-beta pruning algorithms 5

2.1.2 Heuristics . 6

2.2 Rote Learning . 7

2.3 Generalization learning . 7

2.4 Conclusion . 8

3 Some studies in machine learning II (1967) 9

3.1 Introduction . 9

3.2 Extensions to Samuel’s earlier algorithm . 9

3.2.1 Generation of new parameters for the evaluation function 9

3.2.2 Non-linear evaluation function . 9

3.2.3 The general slowness of the learning procedure 11

3.2.4 The absence of any longer-term playing strategy 11

3.3 Conclusion . 11

4 Beyond checkers: the broader context - How did Arthur Samuel contribute

to the evolution of machine learning? 12

2

Some studies in machine learning using the game of checkers

1 Introduction: History and Rules

This report aims at introducing the reader to the first proceedings of checkers AI, pio-

neered in Arthur Samuel’s seminal paper “Some studies in machine learning using the

game of checkers” from 1959 and its successor which was published in 1967 [1, 2].

1.1 History

Checkers is one of the oldest known games played by humanity, with the earliest form of

the game found at an archaeological site in ancient Ur, Mesopotomia (nowadays Iraq),

dating back to approximately 3000 B.C. [3]. In more recent centuries, different variants

were then played in different parts of Eurasia including ancient France, Egypt as well

as Britain. Even in Homer’s Odyssey, reference is made to games being played in the

palace of Ulysses in Ithaca, Greece; also Plato makes frequent mention of the games in

his writings.

The modern version of the game was developed in the 12th century when French Philip

Mouskat came up with the idea of playing checkers on a chess board. With a new board

configuration and new rules set, the game eventually made its way to England and the

Americas and finally became known as “checkers”. Many years later, checkers addition-

ally became the first game in which a machine beat a human, laying the foundations

to what is now known as “machine learning”. Interestingly, checkers is even believed

to be much older than chess [4]. In the following, the rules of modern checkers will be

recapitulated1.

1.2 Rules

Checkers is a two-player non-cooperative game where opponents sit on opposite sides of

the gameboard. One player has the dark pieces; the other has the light pieces. Players

alternate turns and may not move an opponent’s piece. A move consists of moving

a piece diagonally to an adjacent unoccupied square - if the adjacent square contains

an opponent’s piece and the square immediately beyond it is vacant, the piece may be

captured (and removed from the game) by jumping over it.

Only the dark squares of the board are used. A piece may move only diagonally into

an unoccupied square. When presented, capturing is mandatory. A player loses the

game when either being out of legal moves or out of pieces.

1This version is kept short deliberately - for a longer version, the reader is referred to the official rulebook
of the World Checkers Draughts Federation[5].

3

Figure 1: A typical mid-game checkers position.

1.3 The suitability of checkers for early AI

Before turning to Samuel’s work marking the cradle of game-playing AIs, it makes sense

to talk about how checkers and AI interplay - this is relevant because back in 1950,

computing power was sparse, making overly complex games even harder to beat. In

that context, checkers is a comparatively easy game:

The number of possible games that can be played (also known as the game tree size,

the number of leaf nodes in the game tree) is 1031 (Chess: 10123, Go: 10350) and the

average branching factor (the branching factor is the number of legal moves for a given

position) is only 2.8 (Chess: 35, Go: 280).

This shows that Checkers possesses a relative simplicity, making it a good candidate for

early proof-of-concept AIs.

4

Some studies in machine learning using the game of checkers

2 Some studies in machine learning I (1959)

The main contribution of the 1959 paper by Samuel [1] were two methods that used

utilized learning, creating one of the first competent AI programs: rote learning and

learning by generalization. Before turning to these methods in particular, some pre-

requisites are conveyed.

2.1 Samuel’s general approach to solving checkers

2.1.1 The mini-max and alpha-beta pruning algorithms

The underlying approach to Samuel’s checkers program was a Minimax algorithm2, a

recursive algorithm often used in decision-making and game theory. This algorithm

generates the entire game search space for a given position (portrayable as a game tree)

and returns the move associated with the highest reward irrespective of the opponent’s

moves.

Minimax can be optimized using a pruning technique called alpha-beta, where “impos-

sible” (in the sense that neither player is interested in playing a move of this branch)

branches of trees are not considered.

Figure 2: A (look-ahead) move tree in which alpha-beta pruning is fully effective if the tree is
explored from left to right. Board positions for a look-ahead move by the first player
are shown by squares, while board positions for the second player are shown by circles.
The branches shown by dashed lines can be left unexplored without influencing the
final move choice at all.

2To keep the report somewhat brief, no details of this well-known algorithm are given here. Interested
readers can find an excellent introduction in section 5 of [6].

5

Table 1: A selected list of board parameters (possibly) contributing to the evaluation function.
Samuel proposed a total of X terms. The term “passive piece” is very important here -
meaning a piece is on the board, but can’t move. An exhaustive list can be found in the
appendix of the original paper [1].

feature description of the corresponding board position

Ratio Relative piece/kings advantage
Advancement The parameter is credited with 1 for each passive man in the 5th and 6th

rows (counting in passive’s direction) and debited with 1 for each passive man
in the 3rd and 4th rows.

Pole The parameter is credited with 1 for each passive man that is completely
surrounded by empty squares.

Apex The parameter is debited with 1 if there are no kings on the board, if either
square 7 or 26 is occupied by an active man, and if neither of these squares is
occupied by a passive man.

Center control The parameter is credited with 1 for each of the following squares:
11, 12, 15, 16, 20, 21, 24 and 25 which is occupied by a passive man.

Back The parameter is credited with 1 if there are no active kings on the board
and if the two bridge squares (1 and 3, or 30 and 32) in the back row are
occupied by passive pieces.

.

2.1.2 Heuristics

To this day, evaluating non-trivial positions in games like checkers, chess and Go is

computationally imfeasible due to the depth and width of the game tree. In order to

evaluate these positions and form a decision on which move to chose next, heuristics

are used. Hereby, each encountered board position gets evaluated according to certain

numerical features such as the ones described in table 1 which are then combined to

a linear “evaluation function”3. Heuristics face an accuracy-effort trade-off where their

simplified decision process leads to reduced accuracy [7] (in other words, heuristics

face the problem of non-objectivity in their decisions), but they were the only way of

evaluating board positions and thus trying to automate decision processes.

In fact, the use of heuristics apes human behaviour in such board games - good players

mentally jump from one line of play to another without seeming to complete any one

line of reasoning. In doing so, each of these terminating board positions is evaluated

according to what the player thinks about the goodness of these particular positions. If

a position is deemed disadvantageous, moves leading to this position will be avoided.

3While the original paper uses the term “scoring polynomial”, the term evaluation function has been
established in literature since and will therefore be used within this report.

6

Some studies in machine learning using the game of checkers

2.2 Rote Learning

Rote learning simply consisted of saving a description of each board position encoun-

tered during play together with its backed-up heuristic value and the associated next

best move (as determined by the minimax procedure). If a position that had already

been encountered were to occur again as a terminal position of a search tree, the depth

of the search could be amplified as this position’s stored value had been cached earlier.

One initial problem was that the program was not encouraged to move along the most

direct path to a win. Samuel gave it a “a sense of direction” by decreasing a position’s

value a small amount each time it was backed up a level during a Minimax run. Samuel

found this discounting-like technique essential to successful learning. Rote learning

produced slow but continuous improvement that was most effective for opening and

endgame play. His program became a “better-than-average novice” after learning from

many games against itself, a variety of strong human checkers players and from book

games in a supervised learning mode4.

2.3 Generalization learning

While the method of rote learning certainly improved the performance of the checkers

program, it did not allow for a dynamic improvement during actual competitive play.

Samuel’s second, and most important contribution was generalization learning. Here,

the algorithm plays against itself. Black thereby uses the best currently available evalu-

ation function and holds it constant through the game. White, however, starts with the

same function and tries to improve it during the game. If White wins, Black is given

the improved function and the cycle begins again. If White loses too often (say three

times in a row), it is considered to be on the wrong track and given a drastically and

arbitrarily changed evaluation function.

4Although being conceptually related to useful learning methods such as kNN, this method has received
conceptual headwind as it barely entails the transfer part which some authors argue is an essential part
of “learning” [8].

7

Figure 3: A series of tests using learning-by-generalization. Coefficients of the terms of the eval-
uation function in use are plotted against the number of games played. Looking closely,
one can find terms that vanish and ones that appear while playing.

This way, the weights of an evaluation function are changed towards more optimal

setups. Generalization learning also involves a mechanism for replacing terms with little

contribution to evaluation because of coefficients being close to zero. A term rejected

this way is placed on the bottom of a “reserve list” and may thus expect another “chance”

on average 176 moves later.

2.4 Conclusion

Samuel’s first paper on his checkers program marks a historical landmark in machine

learning. It was actually the first time a computer playing a game won against a human

ever5 and it was one of the first times that the idea of “machine learning” was men-

tioned, nicely subsumed by a quote from the original paper: “Programming computers

to learn from experience should eventually eliminate the need for much of this detailed

programming effort.”

Arthur Samuel did not finish working on checkers AI after having written this paper. His

proceedings will be the topic of the following chapter.

5This human was Arthur Samuel himself, who did, despite intellectual capabilities, consider himself only
an average checkers player.

8

Some studies in machine learning using the game of checkers

3 Some studies in machine learning II (1967)

3.1 Introduction

Eight years after his first paper on the topic, Arthur Samuel reports on the substantial

improvements made to his checkers program since then [2]6. He points out that the new

iteration still entails a MiniMax search algorithm with Alpha-Beta search at its core. He

identifies the following weak points in his 1959 algorithm:

• the absence of an effective procedure to generate new parameters for the evalua-

tion procedure

• the incorrectness of the assumption of linearity which underlies the use of a linear

polynomial

• the general slowness of the learning procedure

• the inadequacies of the heuristic procedures used to prune and terminate the tree

search

• the absence of any strategy considerations for altering the machine mode of play

in the light of the tactical situations as they develop during play

He argues that no progress has been made with respect to the first of these defects -

however, some progress has been made in overcoming the other four limitations.In the

following, the techniques used will be described.

3.2 Extensions to Samuel’s earlier algorithm

3.2.1 Generation of new parameters for the evaluation function

The evaluation procedure of the checkers algorithm for minimax is dependent on heuris-

tics to assess the “goodness” of a future position or move - Samuel describes that there

are still problems with this approach that he was not able to solve in an adequate man-

ner.

3.2.2 Non-linear evaluation function

Samuel had long been aware that parameters of his original evaluation function do not

interact. To replace the simple linear combination of weighted values, he used the tech-

6In order to understand this chapter, knowledge of the techniques used in “Some studies in machine
learning I” (as outlined in the previous chapter) is assumed.

9

nique of multilevel signature tables (as seen in Figure 4). Hereby, the final evaluation

value is found through tree search where root nodes (on the left side of Figure 4) were

manifestations of handcrafted feature groups7 and the leaf node showed the sum of

edges corresponding to the features that were “active” at a particular board position. By

grouping these features in a contentually meaningful way, interaction effects between

these features could be modelled (although in a rather arbitrary way). Learning these

signature tables entailed going through book games and increasing two counters for sig-

nature table manifestations depending on whether the current evaluation played a move

played in the book or not. Finally, evaluation scores were updated based on correlation

coefficients between what should have been played and what was actually played. Using

this system on 250,000 book games, Samuel found that the evaluation function rated

book games as first or second preferences 64 % of the time (and first, second, third and

fourth 90 % of the time)8.

Figure 4: A 3-layer signature table scheme. Numbers on lines indicate numbers of permissible
variable values. Values in boxes indicate table sizes. Features according to board
positions were “fed in” on the left. The final evaluation score could then be seen on
the right.

7Due to insufficient computational power, single features could only take three or five distinct values.
Feature groups were then characterized as, e.g. O-++-

8There is no mention in the paper if these values were calculated on a validation set.

10

Some studies in machine learning using the game of checkers

3.2.3 The general slowness of the learning procedure

A large section of the paper is dedicated to improvements (that is, optimizations) of the

Alpha-Beta search algorithm. This entailed thresholding possible directions in the search

tree to not explore branches with tiny, yet computationally costly improvements as well

as more aggressive forward pruning. Also, he implemented ways of first exploring the

most promising paths of the search tree by using so-called “plausibility analyses” - i.e.

crudely scanning the search tree and sorting the branches by their evaluated goodness.

3.2.4 The absence of any longer-term playing strategy

The chief defect of the program in the recent past, according to several checker masters,

seems to have been its failure to maintain any fixed strategy during play. In essence,

every move of a game is seen as a completely new problem. Samuel mentions (without

having conducted experiments) that signature tables could be used to insert “strategic

thinking” into his program by grouping parameters into “signature types” in a manner

related to long term goals in the game. Through adjustment of higher levels interactions,

adjustment to strategies could then be made.

3.3 Conclusion

Summing up, the improvements made to Samuel’s checkers program in the years after

his first paper were mostly two-fold: for one, Samuel achieved significant speed-ups by

optimizing the tree-search algorithm and performance improvements by learning non-

linear evaluation functions using signature tables. In his own conclusion, he states the

following “While the goal outlined in the original paper, that of getting the program to

generate its own parameters, remains as far in the future as it seemed to be in 1959, we

can conclude that techniques are now in hand for dealing with many of the tree pruning

and parameter interaction problems which were certainly much less well understood at

the time of the earlier paper. Perhaps with these newer tools we may be able to apply

machine learning techniques to many problems of economic importance without wait-

ing for the long-sought ultimate solution.” [2]

I will use that last statement to bridge to the last section which is an historical interpo-

lation between how machine learning works today and how it worked back then, trying

to attribute certain developments to the early work of pioneers.

11

4 Beyond checkers: the broader context - How did Arthur

Samuel contribute to the evolution of machine learning?

Arthur Samuel paved the way for subsequent work on machine learning9. His vehicle

for this work was the game of checkers which conveniently entailed hundreds of book

games that Samuel’s algorithm could learn from.

We already talked about the particular constituents and contributions evolving of Arthur

Samuel’s checker program - essentially working alone, he invented several techniques

such as rote learning and generalization learning, using underlying techniques as mu-

table evaluation functions and signature tables. As these contributions are more than

60 years old, this final chapter now deals with what has evolved from these ideas. The

concept of rote learning built the basis of what is now known as memoization10, an op-

timization technique of storing the results of expensive function calls and returning the

cached result when the same inputs occur again.

The rationale behind generalization learning is what constitutes today’s machine learn-

ing - improving mappings without explicit programming, just by using sampled data.

It’s interesting to think about whether today’s machine learning would work differently

without the work of pioneers like Claude Shannon and Arthur Samuel - while this ques-

tion will remain unanswered, Samuel’s (and Claude Shannon’s) approaches to learning

board games are still in heavy use today - the once (that is, before reinforcement learn-

ing started to dominate) strongest chess engine in the world, Stockfish, is using a variant

of Alpha-Beta-Search11 (sped-up by extensive pruning using human chess knowledge).

Samuel did not only influence machine learning. As [9] points out, Samuel’s checker

work greatly influenced the instruction set of early IBM computers as one of the earliest

examples of nonnumeric computation. The logical instructions of these computers were

put in at his instigation and were quickly adopted by all computer designers because

they are useful for most nonnumeric computation [10].

Arthur Samuel kept working on checkers until the mid 1970s [11], at which point his

program achieved sufficient skill to challenge advanced players.

9Not least to be seen by the number of citations (2805 as of July 2019), even beating Claude Shannon’s
“Programming a computer for playing chess” which stands at 1375 at the time of this writing.

10Not to be confused with memorization, the process of storing something in memory for recall at a later
point.

11Actually, readers well-versed in C++ can check the code as it’s open source: https://github.com/kobolabs/

stockfish/blob/master/search.cpp (where the actual Alpha-Beta search algorithm is implemented in the
function id_loop(Position& pos) that takes a board position as input).

12

https://github.com/kobolabs/stockfish/blob/master/search.cpp
https://github.com/kobolabs/stockfish/blob/master/search.cpp

Some studies in machine learning using the game of checkers

References

1. A. L. Samuel. “Some Studies in Machine Learning Using the Game of Checkers”.

IBM Journal of Research and Development 3:3, 1959, pp. 210–229.

2. A. Samuel. “Some studies in machine learning using the game of checkers. II—Recent

progress”. Annual Review in Automatic Programming 6, 1969, pp. 1–36. DOI: 10.

1016/0066-4138(69)90004-4. URL: https://doi.org/10.1016/0066-4138(69)90004-4.

3. The Checkered History of Checkers. https://www.checkershistory.com/. (Accessed on

06/20/2019).

4. www.checkerplay.com/strategy/which-came-first-chess-or-checkers/. http://www.checkerplay.

com/strategy/which-came-first-chess-or-checkers/. (Accessed on 06/20/2019).

5. W. C. D. Federation. Microsoft Word - WCDF Rules of Checkers 2012.doc. http://www.

wcdf.net/rules/rules_of_checkers_english.pdf. (Accessed on 06/20/2019).

6. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Series in Artifi-

cial Intelligence. Prentice-Hall, Englewood Cliffs, NJ, 1995.

7. G. Gigerenzer. “Why Heuristics Work”. Perspectives on Psychological Science 3:1,

2008. PMID: 26158666, pp. 20–29. DOI: 10.1111/j.1745-6916.2008.00058.x. eprint:

https://doi.org/10.1111/j.1745-6916.2008.00058.x. URL: https://doi.org/10.1111/j.

1745-6916.2008.00058.x.

8. R. E. Mayer. “Rote Versus Meaningful Learning”. Theory Into Practice 41:4, 2002,

pp. 226–232. DOI: 10.1207/s15430421tip4104_4. eprint: https://doi.org/10.1207/

s15430421tip4104_4. URL: https://doi.org/10.1207/s15430421tip4104_4.

9. J. McCarthy and E. A. Feigenbaum. “In Memoriam: Arthur Samuel - Pioneer in

Machine Learning.” AI Magazine 11:3, 1990, pp. 10–11. URL: http://dblp.uni-

trier.de/db/journals/aim/aim11.html#McCarthyF90.

10. J. Lee and J. Lee. International Biographical Dictionary of Computer Pioneers. Fitzroy

Dearborn, 1995. ISBN: 9781884964473. URL: https://books.google.de/books?id=

ocx4Jc12mkgC.

11. J. Schaeffer. One Jump Ahead - Computer Perfection at Checkers. 2. Aufl. Springer

Science Business Media, Berlin Heidelberg, 2008. ISBN: 978-0-387-76576-1.

13

http://dx.doi.org/10.1016/0066-4138(69)90004-4
http://dx.doi.org/10.1016/0066-4138(69)90004-4
https://doi.org/10.1016/0066-4138(69)90004-4
https://www.checkershistory.com/
http://www.checkerplay.com/strategy/which-came-first-chess-or-checkers/
http://www.checkerplay.com/strategy/which-came-first-chess-or-checkers/
http://www.wcdf.net/rules/rules_of_checkers_english.pdf
http://www.wcdf.net/rules/rules_of_checkers_english.pdf
http://dx.doi.org/10.1111/j.1745-6916.2008.00058.x
https://doi.org/10.1111/j.1745-6916.2008.00058.x
https://doi.org/10.1111/j.1745-6916.2008.00058.x
https://doi.org/10.1111/j.1745-6916.2008.00058.x
http://dx.doi.org/10.1207/s15430421tip4104_4
https://doi.org/10.1207/s15430421tip4104_4
https://doi.org/10.1207/s15430421tip4104_4
https://doi.org/10.1207/s15430421tip4104_4
http://dblp.uni-trier.de/db/journals/aim/aim11.html#McCarthyF90
http://dblp.uni-trier.de/db/journals/aim/aim11.html#McCarthyF90
https://books.google.de/books?id=ocx4Jc12mkgC
https://books.google.de/books?id=ocx4Jc12mkgC

	Introduction: History and Rules
	History
	Rules
	The suitability of checkers for early AI

	Some studies in machine learning I (1959)
	Samuel's general approach to solving checkers
	The mini-max and alpha-beta pruning algorithms
	Heuristics

	Rote Learning
	Generalization learning
	Conclusion

	Some studies in machine learning II (1967)
	Introduction
	Extensions to Samuel's earlier algorithm
	Generation of new parameters for the evaluation function
	Non-linear evaluation function
	The general slowness of the learning procedure
	The absence of any longer-term playing strategy

	Conclusion

	Beyond checkers: the broader context - How did Arthur Samuel contribute to the evolution of machine learning?

