
Learning how to explain neural networks:
PatternNet and PatternAttribution

Kindermans et al. 2017 (Google Brain, TU Berlin)

Florian Kleinicke

Universität Heidelberg
kleinicke@stud.uni-heidelberg.de

June 7, 2018



Motivation

Which area was the most important for the
neural network to classify the image?

Trivial approach: look at the weights and the influence of every pixel

3



Example

Figure: In first line total data compared to signal. In the second line the
attribution of the used signal to the decision.

4



Overview

• Linear Model

• Signal estimators

• Quality measurements

• Experiments and Results

5



A Linear Model

x is total data
s is the signal
d is the distractor
y is the output (classification)
as and ad are directions of spread information.
goal is to extract information y from x
multiply x with weight vector (filter) w=[1,−1]T

7



Dependency of w and d

Figure: w is dependent on distractor d, not the signal s

Other approaches take w as importance measure.
But it highly depends on the distractor.
Detecting as has to been learned from data.

8



Signal estimators: Sx - identity estimator

Signal estimator Sx(x) = x

Attribution r = w
⊙

Sx(x) = w
⊙

s + w
⊙

d

Distractor is present - output noisy

10



Signal estimators: Sw - filter based estimator

Assumption: Signal varies in direction of w

Signal estimator Sw (x) = w
wTw

wTx = 1
wTw

wy

Attribution w
⊙

Sw (x) = w
⊙

w
wTw

y

Doesn’t reconstruct optimal solution for previous linear example.

11



Signal estimators: Sa - linear estimator

Distractor d = x− S(x) should be 0.
cov [y ,d] = 0⇒ cov [x, y ] = cov [S(x), y ]

Using the linear estimator Sa(x) = awTx (= asy)

cov [x, y ] = cov [awTx, y ] = a× cov [y , y ]⇒ a = cov [x,y ]
σ2
y

12



Signal estimators: Sa+− - two-component estimator

Linear estimator with two cases.

x =
{ s+ + d+ if y > 0

s− + d− otherwise

Sa+−(x) =
{ a+wTx if wTx > 0

a−wTx otherwise

14



Signal estimators: Sa+− - two-component estimator

Another reminder from statistics:
cov [p,q] = E [pq]− E [p]E [q]

In positive regime: cov [x+, y ] = cov [S(x)+, y ]
E+[xy ]− E+[x]E+[y ] = E+[S(x)y ]− E+[S(x)]E+[y ]

Use Sa+(x) = a+wTx

a+ =
E+[xy ]− E+[x]E+[y ]

wTE+[xy ]−wTE+[x]E+[y ]

For a− analogous

15



Attribution

Describes the influence and relevance for the output
For linear model rinput = w

⊙
asy = w

⊙
s

For more complicated case Deep Taylor Decomposition

routputi = y , routputj 6=i = 0, rl−1,i =
w
⊙

(x− x0)

wTx
r li

PatternAttribution is a Deep Taylor Decomposition, extended around
distractor with negative attributions determined by ReLUs.
d = x0 = x− S(x)+− = x− a+wTx

rl−1,i =
w
⊙

(x− x− a+wTx)

wTx
r li = w

⊙
a+r

l
i

19



Approaches

Figure: Illustration of explanation approaches.

21



Quality

Keep in mind: x = s + d wTx = y , wT s = y , wTd = 0;

And a small reminder from statistics:

corr(p,q) =
cov(p,q)√

σ2pσ
2
q

The Quality measure, depending on signal estimator S(x):

ρ(S) = 1−max
v

corr [vT (x− S(x)),wTx] = 1−max
v

corr [vTd, y ]

= 1−max
v

vT cov [d, y ]√
σ2
vTd

σ2y

24



Experiments

Implementation with the Lasagne library, trains in Theano.
Data: ImageNet, rescaled and cropped to 224x224 pixels
Used network: pre-trained VGG-16

Signal estimators trained on first half of training set
v used for quality estimator trained on second half.
Official validation set of 50000 samples used for validation

26



Experiments

VGG16-network - several days training of 4 GPUs
Linear and two-component estimators - 4 hours training
Quality estimator - 1 day training signal estimator on Tesla K40

afterwards individual explanations are computationally cheap

27



Results

Figure: Comparing different signal estimators in each layer. Higher is better

29



Results

Figure: Averaged most relevant image patches. Higher decay is better.

30



Results

Figure: Compare different signal estimators and it’s attribution

31



Results

Figure: Compare different methods on multiple images

32



Summary

• Showed a interesting approach to learn what areas are of interest

• PatternNet works perfectly for linear model and good for real
images

• Requires additional time for training, but is computationally cheap
for individual explanations

33



Discussion

• a few formulas were unnecessarily complicated

• It’s hard to tell if comparison is to other methods fair or there is
something better around

• easy to build a minimal model that self proposed method is
optimized for

34



Learning how to explain neural networks:
PatternNet and PatternAttribution

Kindermans et al. 2017 (Google Brain, TU Berlin)

Florian Kleinicke

Universität Heidelberg
kleinicke@stud.uni-heidelberg.de

June 7, 2018

35


