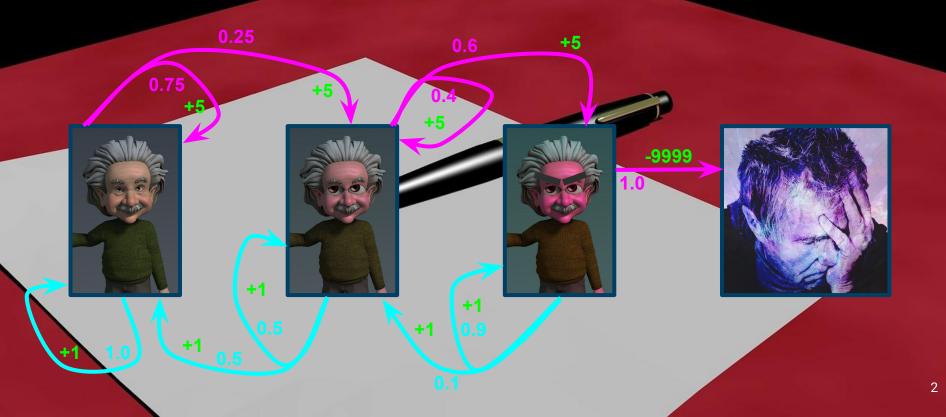
Einführung ins Reinforcement Learning

~ Patrick Dammann ~ ~ Ist künstliche Intelligenz gefährlich? ~

how to cheat in an exam

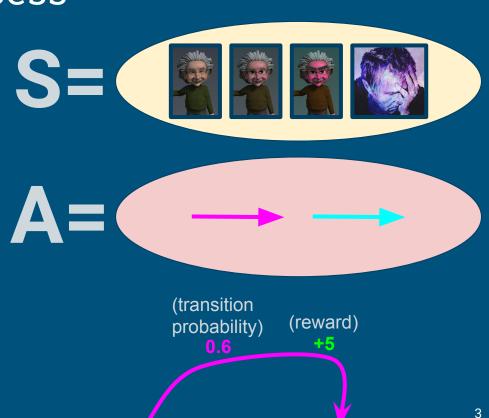
cheatdon't cheat



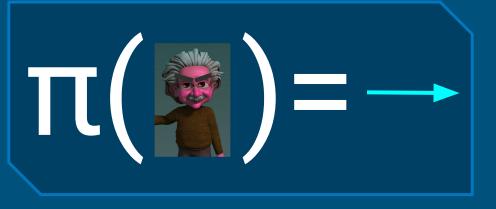
markov decision process

the given problem:

- set of states $S = \{s_1, \dots, s_n\}$
- set of **actions** $A = \{a_1, \dots, a_m\}$
- transition between states via actions (and randomness)
- rewards for transitions
- markov property is given



markov decision process ~ cont.

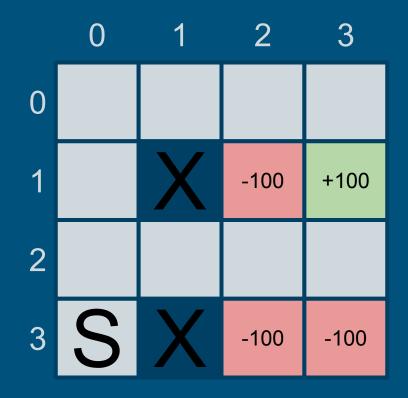


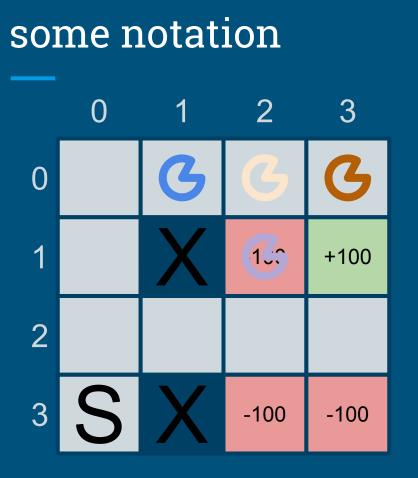
what we want:

- maximize rewards (just a value)
- a **policy** π^* that defines the best action for every state
- $\pi: S \rightarrow A$

another example

- 4x4 states (visualized as 2d grid)
- 4 actions (north, south, east, west)
- chance to take random orthogonal direction (e.g. 10%)
- invalid movement results in transition to same state
- negative reward for moving
- terminal fields (colored) end game on any action, giving noted reward





- T(s, a, s') # transition
 - probabillity of getting into state s' when using action a in state s

- reward for getting into state s' when using action a in state s
- $\gamma \in [0,1]$:= discount factor
 - $\circ \quad \ \ \text{ in timestep t, rewards are worth } \gamma^t \cdot R(s,a,s')$
 - \circ makes sooner rewards worth more
 - \circ γ = 1: don't care when rewards are achived
 - \circ γ = 0: only care about immediate rewards

the V-values

 $V^{*}(s)$ is the estimated reward when starting in s, taking the optimal action and continue to act optimally.

- $V^{*}(s) = \max_{a} \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^{*}(s')]$
- $V^{*}(s) = \max_{a} \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^{*}(s')]$
- $V^*(s) = \max_a \sum_{s'} T(s,a,s') \left[\text{ est. reward when taking action } a, \text{ landing in state } s' \text{ and continue acting optimally} \right]$
- $V^*(s) = \max_a \sum_{s'} \left[\text{ est. reward when taking action a, landing in state s' and continue acting optimally, weighted by probability} \right]$
- $V^*(s) = \max_{a} \left[\text{ est. reward when taking action a and continue acting optimally} \right]$
- $V^*(s) = [$ est. reward when taking **best action** and continue acting optimally]

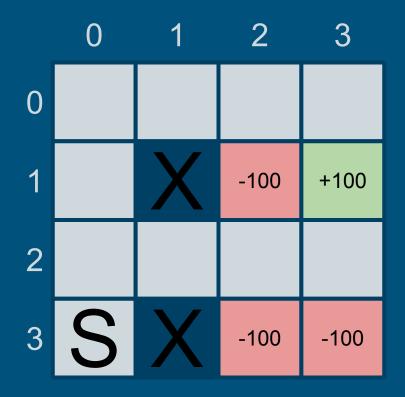
value iteration

 $V^{k}(s)$ is the estimated reward when starting in s, taking the optimal action and continue to act optimally with only k timesteps left.

- find V^{*} via bottom up, iterative approach
- V¹ is known (by problem definition)
- calculate V^{k+1} via information from V^k

$$V^{k+1}(s) = \max_{a} \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \cdot V^{k}(s') \right]$$

• for $k \to \infty$: $V^k \to V^*$



value iteration ~ example

 $V^{k}(s) = \max_{a} \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \cdot V^{k-1}(s') \right]$

 $\gamma = 0.9$ r = -2 (moving reward)

p(random) = 0.2 $\Rightarrow T(s, a_N, s_N) = 0.8$ $\Rightarrow T(s, a_N, s_W) = 0.1$ $\Rightarrow T(s, a_N, s_E) = 0.1$

	0	1	2	3
0	-2	-2	-2	-2
1	-2	0	-100	+100
2	-2	-2	-2	-2
3	-2	0	-100	-100

value iteration ~ example steps

0

	0	1	2	3
0	-2	-2	-2	2
1	-2	0	-100	+100
2	-2	-2	-2	-2
3	-2	0	-100	-100

 1
 -3.8
 0
 -100
 +100

 2
 -3.8
 -3.8
 -21.4
 69.6

 3
 -3.8
 0
 -100
 -100

1

-3.8

2

-3.8

3

69.6

0

-3.8

immediate reward for best option

2 probability weighted average over immediate rewards and discounted reward from there for best action

		0	1	2	3
	0	-5.4	-5.4	47.5	69.3
	1	-5.4	0	-100	+100
	2	-5.4	-5.4	30.1	66.1
	3	-5.4	0	-100	-100

 $\max_{a} \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \cdot V^2(s') \right]$

live demo

value iteration

policy extraction

what we want:

• maximize rewards

 $\pi: S \rightarrow A$

 a policy π^{*} that defines the best action for every state

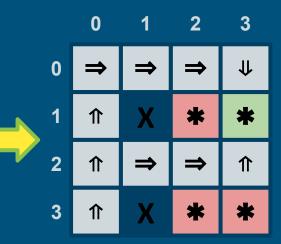
- assume we have V^{*}, how to get π^* ?
- simulate one timestep for every action, take best action

$$V^{*}(s) = \max_{a} \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma \cdot V^{*}(s')]$$
$$\pi^{*}(s) = \operatorname{argmax}_{a} \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma \cdot V^{*}(s')]$$

policy extraction ~ example

- value iteration might give approximations for V^{*} converged to machine ε
- policy extraction then generates the optimal policy π^{*}
- we now have the perfect action for every state in a game with unlimited time

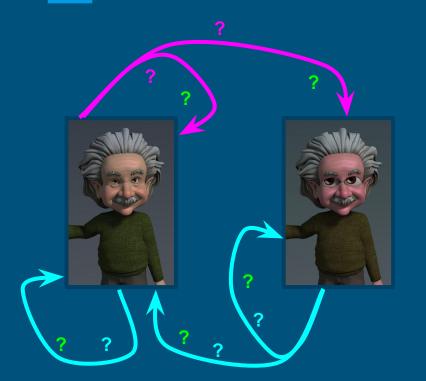
	0	1	2	3
0	49.5	59.1	70.1	82.6
1	41.0	0	-100	+100
2	33.6	28.2	34.9	76.3
3	27.0	0	-100	-100



live demo

policy extraction

a slightly different problem

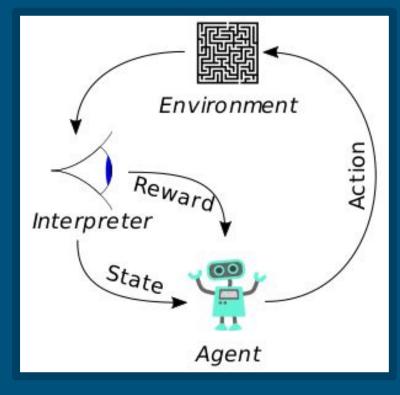


- assume having an MDP
- set of action A = $\{a_1, ..., a_n\}$ is known
- current state s is known

T(s,a,s') and R(s,a,s') are **<u>not</u>** known and must be **determined by trial and error**

⇒ the agent must actively explore the environment

reinforcement learning



model based approach

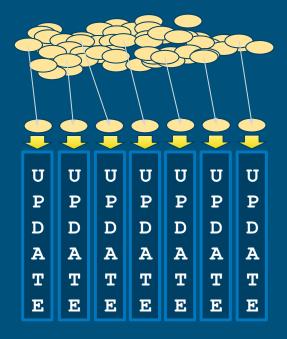
approximate T(s,a,s') and R(s,a,s')

- by collecting as many samples as possible
- solve MDP
 - e.g. via value iteration and policy extraction

- problematic, since the agent often can't move "freely"
- requires **huge amount** of samples

Why not learn V directly, without a model?

temporal difference learning



• initialize V randomly

- 1. take action based on your policy
- 2. **update V based on your experience** (only for state you came from)
- 3. update policy
- 4. if terminated, go to start state
- 5. go to 1.

(2. and 3. can be made batchwise every n actions)

td learning ~ update V based on your experience

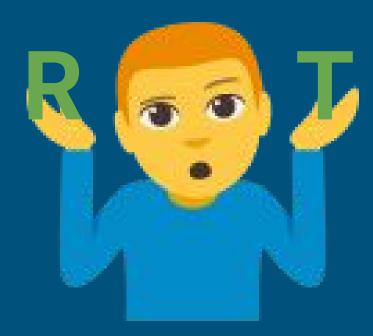
Took action a in state s. Landed in state s' gaining reward r.

$$V(s) \leftarrow V(s) + \alpha (r + \gamma \cdot V(s') - V(s))$$

(α : learning rate)

- adjust V(s) a little into the direction of the sample
- let α decay over time
- converges to V^{*} under certain circumstances

td learning ~ update policy



 $\pi^{*}(s) = \operatorname{argmax}_{a} \Sigma_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \cdot V^{*}(s') \right]$

- can't use policy extraction, since R and T are not present
- other methods not that trivial

Can we directly learn a policy?

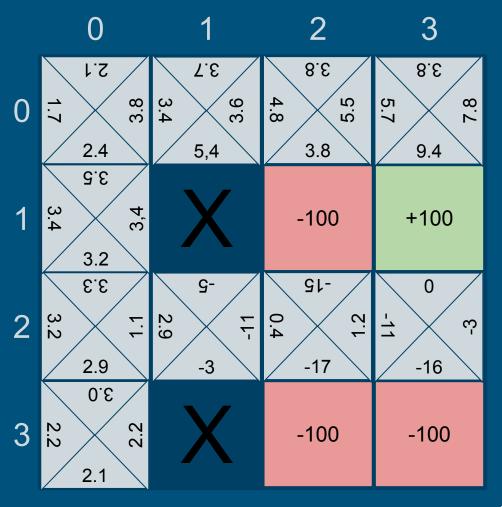
the Q-values

V^{*}(s) is the estimated reward when starting in s, taking the optimal action and continue to act optimally.

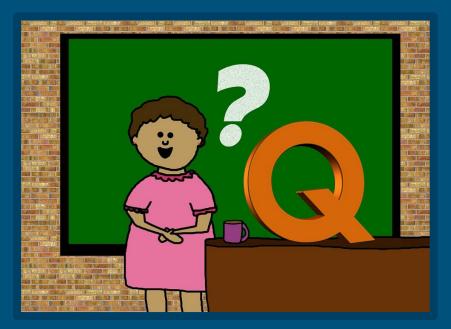
Q^{*}(s,a) is the **estimated reward** when **starting in s**, taking the **action a** and continue to **act optimally**.

 \Rightarrow |A| values per state instead of one

 $V(s) = \max_{a} Q(s,a)$ $\pi(s) = \arg\max_{a} Q(s,a)$



Q-learning



- temporal difference learning on Q-values
- needs more samples to converge
- policy is learned implicitly
- ⊕ no V values needed

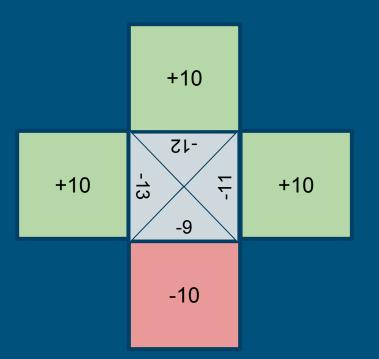
$$\begin{split} \mathsf{V}(\mathsf{s}) &\leftarrow \mathsf{V}(\mathsf{s}) + \alpha \big(\mathsf{r} + \gamma \cdot \mathsf{V}(\mathsf{s}') - \mathsf{V}(\mathsf{s}) \big) \\ \mathsf{Q}(\mathsf{s},\mathsf{a}) &\leftarrow \mathsf{Q}(\mathsf{s},\mathsf{a}) + \alpha \big(\mathsf{r} + \gamma \cdot \mathsf{V}(\mathsf{s}') - \mathsf{Q}(\mathsf{s},\mathsf{a}) \big) \\ \mathsf{Q}(\mathsf{s},\mathsf{a}) &\leftarrow \mathsf{Q}(\mathsf{s},\mathsf{a}) + \alpha \big(\mathsf{r} + \gamma \cdot \max_{\mathsf{a}'} \mathsf{Q}(\mathsf{s}',\mathsf{a}') - \mathsf{Q}(\mathsf{s},\mathsf{a}) \big) \end{split}$$

where to go?

imagine this situation:

- all Q-values are initialized with some random value
- worst action a has initially highest Q-value
- other actions have initially lower Q-values than the optimal Q-value of **a**

- \Rightarrow the agent will never try the other actions
- \Rightarrow we need to motivate him doing so



exploration

optimistic initial conditions

- estimate maximum Q-values
- initialize all Q-values higher
- updates will decrease Q-values (since Q-learning converges)
- agent will prefer other action in later iterations

<u>ε-greedy exploration</u>

- new hyperparameter 0 ≤ ε ≤ 1 (this can change during training)
- agent will perform a random action with a chance of ε
- at test time, ε is usually set to 0

exploration ~ cont.

exploration function

- artificially boost Q-values of state-actions that were not used frequently
- choose an exploration function E(s,a,n)with $E \rightarrow 0$ for $n \rightarrow \infty$

(n: number of state-action uses)

• add this function during Q-value updates

e.g.: E(s,a,n) = k/n, $k \in \mathbb{Q}$

 $Q(s,a) \leftarrow Q(s,a) + \alpha \left[r + \gamma \cdot max_{a'}(Q(s',a') + E(s',a',n_{s,a})) - Q(s,a) \right]$

the state space

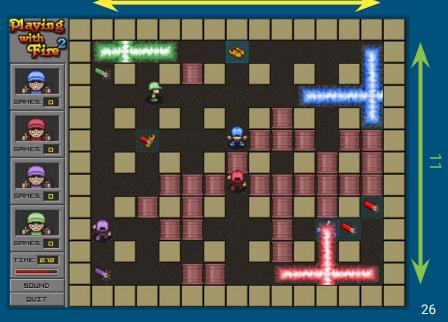
 $|S| = (1 + 1 + 1 + 4 + 4 + 4)^{13 \cdot 11} \cdot (13 \cdot 44)^{4} \cdot (11 \cdot 44)^{4} \cdot (3 \cdot 60) \cdot \dots$

 $|S| = 15^{13 \cdot 11} \cdot 276848^4 \cdot 180$

 $|S| \approx 1.5 \cdot 10^{168} \cdot 5.9 \cdot 10^{21} \cdot 180$

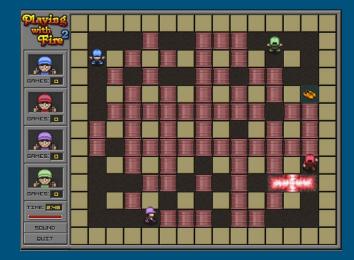
 $|S| \approx 1.593 \cdot 10^{192}$ (~ 3.4 \cdot 10^{21} \cdot possible constellations in Go)

⇒ enormous state space in realistic scenarios

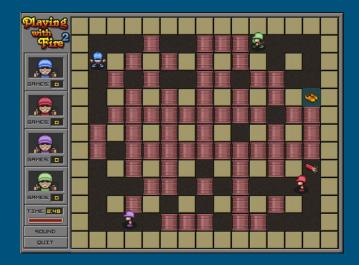


13

the state space and its redundancies



- these states are completely different for our agent
- the optimal action here is (most likely) the same



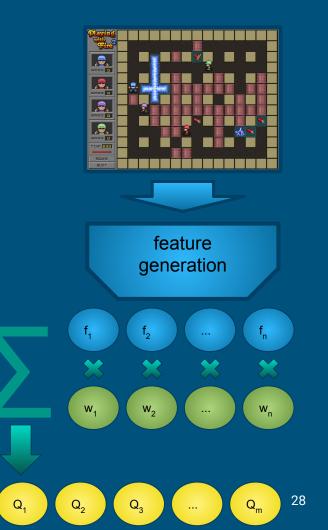
state features

- generate **powerful features** from states
- use features to generate continuous Q-function instead of lookup table

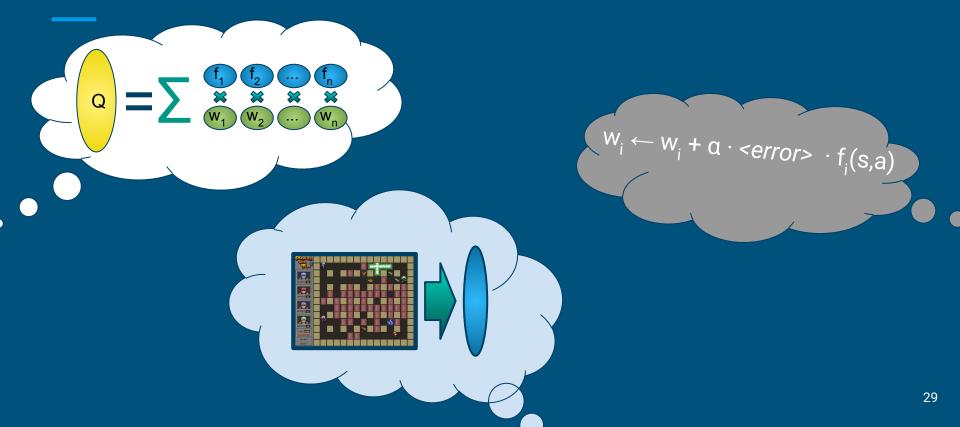
$$Q(s,a) = W_1 \cdot f_1(s,a) + W_2 \cdot f_2(s,a) + ... + W_n \cdot f_n(s,a)$$

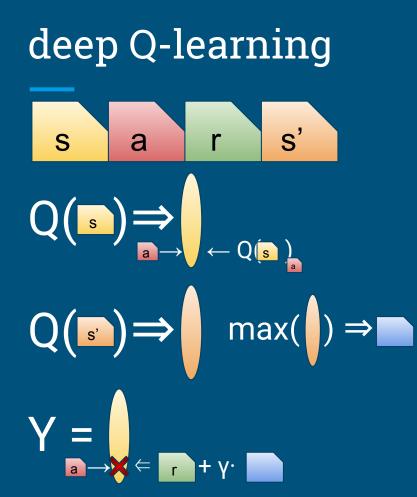
• during training: tweak weights instead of entries

 $\begin{array}{l} Q(s,a) \leftarrow Q(s,a) + \alpha \cdot < error > \\ w_i \leftarrow w_i + \alpha \cdot < error > \cdot f_i(s,a) \end{array}$



does this sound familiar..?





- Q-function is approximated by neural network
 - input: state
 - output: vector w/ Q-values for all actions
- CNNs allow use of pixel data (game screens, camera) as input
- train with the same samples as in normal Q-learning (s,a,r,s')
- output "label" for training contains:
 - \circ r + $\gamma \cdot max_{a'}Q(s')_{a'}$ for a action taken
 - $Q(s)_b$ for all other actions $b \in A$ (\Rightarrow no error)

sources

• AI Course CS188 (University Berkley)

- o http://ai.berkeley.edu/home.html
- <u>https://www.youtube.com/channel/UCB4_W1V-KfwpTLxH9jG1_iA/videos</u>
- Harmon & Harmon: Reinforcement Learning: A Tutorial
 - <u>http://web.cs.iastate.edu/~honavar/rltut.pdf</u>
- qlearning4k (deep Q-learning framework)
 - https://github.com/farizrahman4u/glearning4k

The End.

Any Questions?

Thank you for your attention!