
Einführung ins
Reinforcement Learning

~ Patrick Dammann ~
~ Ist künstliche Intelligenz gefährlich? ~

how to cheat in an exam cheat

don’t cheat

0.25

0.75

0.6

0.4

1.0

0.9

0.1

0.5
0.51.0

+5
+5

+5

+5

+1 +1

+1

+1

-9999

+1

2

markov decision process

the given problem:

● set of states S = {s1,...,sn}
● set of actions A = {a1,...,am}
● transition between states via

actions (and randomness)
● rewards for transitions
● markov property is given

3

0.6 +5
(reward)

(transition
probability)

S=

A=

markov decision process ~ cont.

what we want:

● maximize rewards (just a value)
● a policy π* that defines the best

action for every state
● π: S → A

4

π()=

another example

● 4x4 states (visualized as 2d grid)
● 4 actions (north, south, east, west)
● chance to take random orthogonal

direction (e.g. 10%)
● invalid movement results in

transition to same state
● negative reward for moving
● terminal fields (colored) end game

on any action, giving noted reward

X -100 +100

S X -100 -100

0 1 2 3

0

1

2

3

5

some notation ● T(s, a, s’) # transition
○ probabillity of getting into state s’ when using

action a in state s
○ T(s0,2 ,aE ,s0,3) = 0.8 # go E, as planned

T(s0,2 ,aE ,s0,2) = 0.1 # go N, bump against wall
T(s0,2 ,aE ,s1,2) = 0.1 # go S
T(s0,2 ,aE ,s0,1) = 0.0 # go W

● R(s, a, s’) # reward
○ reward for getting into state s’ when using

action a in state s
○ R(s1,2,__,__) = -100 # lose

R(s2,0,aN,s1,0) = -2 # moved
R(s1,3,__,__) = +100 # win

● γ ∈ [0,1] := discount factor
○ in timestep t, rewards are worth γt ·R(s,a,s’)
○ makes sooner rewards worth more
○ γ = 1: don’t care when rewards are achived
○ γ = 0: only care about immediate rewards

X -100 +100

S X -100 -100

0 1 2 3

0

1

2

3
6

the V-values

V*(s) is the estimated reward when starting in s, taking the optimal action and continue to act optimally.

● V*(s) = maxaΣs’ T(s,a,s’) [R(s,a,s’) + γ·V*(s’)]

● V*(s) = maxaΣs’ T(s,a,s’) [R(s,a,s’) + γ·V*(s’)]

● V*(s) = maxaΣs’ T(s,a,s’) [est. reward when taking action a, landing in state s’ and continue acting optimally]

● V*(s) = maxaΣs’ [est. reward when taking action a, landing in state s’ and continue acting optimally, weighted by probabillity]
● V*(s) = maxa [est. reward when taking action a and continue acting optimally]
● V*(s) = [est. reward when taking best action and continue acting optimally]

7

value iteration

Vk(s) is the estimated reward when starting in s,
taking the optimal action and continue to act
optimally with only k timesteps left.

● find V* via bottom up, iterative approach
● V1 is known (by problem definition)
● calculate Vk+1 via information from Vk

Vk+1(s) = maxaΣs’ T(s,a,s’) [R(s,a,s’) + γ·Vk(s’)]

● for k ⟶ ∞: Vk ⟶ V*

X -100 +100

S X -100 -100

0 1 2 3

0

1

2

3

8

value iteration ~ example

Vk(s) = maxaΣs’ T(s,a,s’) [R(s,a,s’) + γ·Vk-1(s’)]

γ = 0.9
r = -2 (moving reward)

p(random) = 0.2
⇒T(s,aN,sN) = 0.8
⇒T(s,aN,sW) = 0.1
⇒T(s,aN,sE) = 0.1 9

-2 -2 -2 -2

-2 0 -100 +100

-2 -2 -2 -2

-2 0 -100 -100

0 1 2 3

0

1

2

3

value iteration ~ example steps

10

-2 -2 -2 2

-2 0 -100 +100

-2 -2 -2 -2

-2 0 -100 -100

0 1 2 3

0

1

2

3

-3.8 0 -100 +100

0 -100 -100

0 1 2 3

0

1

2

3

-5.4 47.5 69.3

0 -100 +100

30.1 66.1

0 -100 -100

0 1 2 3

0

1

2

3

-3.8 -3.8 -3.8 69.6

-3.8 -3.8 -21.4 69.6

-3.8

-5.4

-5.4

-5.4 -5.4

-5.4

V1
immediate reward for
best option V2

probability weighted
average over immediate
rewards and discounted
reward from there for
best action

V3=
maxaΣs’ T(s,a,s’) [R(s,a,s’) + γ·V2(s’)]

live demo

11

value iteration

policy extraction

● assume we have V*, how to get π* ?
● simulate one timestep for every action, take

best action

V*(s) = maxaΣs’T(s,a,s’)[R(s,a,s’) + γ·V*(s’)]

π*(s) = argmaxaΣs’T(s,a,s’)[R(s,a,s’) + γ·V*(s’)]

what we want:
● maximize rewards
● a policy π* that defines

the best action for every
state

● π: S → A

12

policy extraction ~ example

● value iteration might give
approximations for V*
converged to machine ε

● policy extraction then
generates the optimal policy
π*

● we now have the perfect
action for every state in a
game with unlimited time

41.0 0 -100 +100

0 -100 -100

0 1 2 3

0

1

2

3

⇒ ⇒ ⇓

X ✱ ✱

⇒ ⇑

X ✱ ✱

0 1 2 3

0

1

2

3

49.5 59.1 70.1 82.6

33.6 28.2 34.9 76.3

27.0

⇒

⇑

⇑ ⇒

⇑

13

live demo

14

policy extraction

a slightly different problem

● assume having an MDP
● set of action A = {a1, ..., an} is known
● current state s is known

T(s,a,s’) and R(s,a,s’) are not known and must be
determined by trial and error

⇉ the agent must actively explore the
environment

?

?

?
??

?
?

? ?

?

15

reinforcement
learning

16

model based approach

● approximate T(s,a,s’) and R(s,a,s’)
○ by collecting as many samples as possible

● solve MDP
○ e.g. via value iteration and policy extraction

● problematic, since the agent often can’t
move “freely”

● requires huge amount of samples

Why not learn V directly, without a model?

T(s,a,s’) & R(s,a,s’)

normal MDP

17

temporal difference learning

● initialize V randomly

1. take action based on your policy
2. update V based on your experience

(only for state you came from)
3. update policy
4. if terminated, go to start state
5. go to 1.

(2. and 3. can be made batchwise every n actions)

U
P
D
A
T
E

U
P
D
A
T
E

U
P
D
A
T
E

U
P
D
A
T
E

U
P
D
A
T
E

U
P
D
A
T
E

U
P
D
A
T
E

18

td learning ~ update V based on your experience

Took action a in state s.
Landed in state s’ gaining reward r.

V(s) ← V(s) + α(r + γ·V(s’) - V(s))
(α : learning rate)

● adjust V(s) a little into the direction of the sample
● let α decay over time
● converges to V* under certain circumstances

TD

19

td learning ~ update policy

π*(s) = argmaxaΣs’T(s,a,s’)[R(s,a,s’) + γ·V*(s’)]
● can’t use policy extraction, since R and T are not

present
● other methods not that trivial

Can we directly learn a policy?

Emoji on this page provided free by EmojiOne

R T

20

the Q-values

V*(s) is the estimated reward when
starting in s, taking the optimal action
and continue to act optimally.

Q*(s,a) is the estimated reward when
starting in s, taking the action a
and continue to act optimally.

⇒ |A| values per state instead of one

X -100 +100

X -100 -100

0 1 2 3

0

1

2

3

2.4

2.1
1.7 3.

8

5,4

3.7

3.4 3.
6

3.8

3.8

4.8 5.
5

9.4

3.8

5.7 7.
8

2.9

3.3

3.2 1.
1

-3

-5

2.9 -1
1

-17

-15
0.4 1.

2

-16

0

-11 -3

3.2

3.5

3.4 3,
4

2.1

3.0

2.2 2.
2

21

V(s) = maxa Q(s,a)
π(s) = argmaxa Q(s,a)

How to learn those Q-values?

Q-learning

● temporal difference learning on Q-values

⊖ needs more samples to converge
⨁ policy is learned implicitly
⨁ no V values needed

V(s) ← V(s) + α(r + γ·V(s’) - V(s))

Q(s,a) ← Q(s,a) + α(r + γ·V(s’) - Q(s,a))

Q(s,a) ← Q(s,a) + α(r + γ·maxa’Q(s’,a’) - Q(s,a))

22

where to go?

imagine this situation:

● all Q-values are initialized with some random
value

● worst action a has initially highest Q-value
● other actions have initially lower Q-values

than the optimal Q-value of a

⇉ the agent will never try the other actions
⇉ we need to motivate him doing so

23

+10

-10

-9

-12
-13 -1

1+10 +10

exploration

ε-greedy exploration

● new hyperparameter 0 ≤ ε ≤ 1
(this can change during training)

● agent will perform a random action with a
chance of ε

● at test time, ε is usually set to 0

24

optimistic initial conditions

● estimate maximum Q-values
● initialize all Q-values higher
● updates will decrease Q-values

(since Q-learning converges)
● agent will prefer other action in later

iterations

exploration ~ cont.

exploration function

● artificially boost Q-values of state-actions
that were not used frequently

● choose an exploration function E(s,a,n)
with E ⟶ 0 for n ⟶ ∞
(n: number of state-action uses)

● add this function during Q-value updates

e.g.: E(s,a,n) = k/n , k ∈ ℚ

Q(s,a) ← Q(s,a) + α[r + γ·maxa’(Q(s’,a’) + E(s’,a’,ns,a)) - Q(s,a)]

25

+2

+11

the state space

|S| = 1513·11 · 2768484 · 180

|S| ≈ 1.5·10168 · 5.9·1021 · 180

|S| ≈ 1.593·10192

(~ 3.4·1021 · possible constellations in Go)

⇉ enormous state space in realistic scenarios

26

13

11

|S| ≈ 1593000

|S| = (1 + 1 + 1 + 4 + 4 + 4)13·11 · (13 · 44)4 · (11 · 44)4 · (3 · 60) · ...

the state space and its redundancies

● these states are completely different for
our agent

● the optimal action here is (most likely) the
same

27

state features

● generate powerful features from states
● use features to generate continuous Q-function

instead of lookup table

Q(s,a) = w1·f1(s,a) + w2·f2(s,a) + ... + wn·fn(s,a)

● during training: tweak weights instead of entries

Q(s,a) ← Q(s,a) + α · <error>
 wi ← wi + α · <error> · fi(s,a)

28

feature
generation

f1 f2 ... fn

w1 w2 ... wnΣ
Q1 Q2 Q3 ... Qm

does this sound familiar..?

29

=ΣQ

wi ← wi + α · <error> · fi(s,a)

f1 f2 fn...

w1 ...w2 wn

deep Q-learning

● Q-function is approximated by neural network
○ input: state
○ output: vector w/ Q-values for all actions

● CNNs allow use of pixel data (game screens,
camera) as input

● train with the same samples as in normal
Q-learning (s,a,r,s’)

30

s a r s’

Q()⇒s

→ ← Q()s
a

a

Q()⇒s’ max() ⇒

Y =
→ ⇐ + γ· a r

● output “label” for training contains:
○ r + γ·maxa’Q(s’)a’ for a action taken
○ Q(s)b for all other actions b ∈ A

(⇒ no error)

sources

● AI Course CS188 (University Berkley)
○ http://ai.berkeley.edu/home.html
○ https://www.youtube.com/channel/UCB4_W1V-KfwpTLxH9jG1_iA/videos

● Harmon & Harmon: Reinforcement Learning: A Tutorial
○ http://web.cs.iastate.edu/~honavar/rltut.pdf

● qlearning4k (deep Q-learning framework)
○ https://github.com/farizrahman4u/qlearning4k

31

http://ai.berkeley.edu/home.html
http://ai.berkeley.edu/home.html
https://www.youtube.com/channel/UCB4_W1V-KfwpTLxH9jG1_iA/videos
https://www.youtube.com/channel/UCB4_W1V-KfwpTLxH9jG1_iA/videos
http://web.cs.iastate.edu/~honavar/rltut.pdf
http://web.cs.iastate.edu/~honavar/rltut.pdf
https://github.com/farizrahman4u/qlearning4k
https://github.com/farizrahman4u/qlearning4k

The End.
Thank you for your attention!

Any Questions?

32

