Fallacies of Reasoning

How We Fool Ourselves

Valentin Wüst 7th November, 2019

1. Base-Rate / Prosecutor's Fallacy

2. Gambler's / Hot-Hand Fallacy

3. Hindsight Bias

Base-Rate / Prosecutor's Fallacy

• "Humans are 54% accurate at recognizing lies."

- "Humans are 54% accurate at recognizing lies."
- What is the corresponding base-rate of lies?

Base-Rate / Prosecutor's Fallacy

• Sensitivity, p(P|HIV): 100%

- Sensitivity, p(P|HIV): 100%
- Specificity, $p(N|\neg HIV)$: 99.8%

- Sensitivity, p(P|HIV): 100%
- Specificity, $p(N|\neg HIV)$: 99.8%

	HIV Positive	HIV Negative
Positive	1	0.002
Negative	0	0.998

- Sensitivity, p(P|HIV): 100%
- Specificity, $p(N|\neg HIV)$: 99.8%

	HIV Positive	HIV Negative
Positive	1	0.002
Negative	0	0.998

• "Accuracy greater than 99%"

- Sensitivity, p(P|HIV): 100%
- Specificity, $p(N|\neg HIV)$: 99.8%

	HIV Positive	HIV Negative
Positive	1	0.002
Negative	0	0.998

- "Accuracy greater than 99%"
- "[...] test result is positive. You are probably HIV positive."

- Sensitivity, p(P|HIV): 100%
- Specificity, $p(N|\neg HIV)$: 99.8%

	HIV Positive	HIV Negative
Positive	1	0.002
Negative	0	0.998

- "Accuracy greater than 99%"
- "[...] test result is positive. You are probably HIV positive."
- "This means a positive result will be correct 998 out of every 1000 tests."

Bayes' Theorem:

$$p(HIV|P) = \frac{p(P|HIV) p(HIV)}{p(P)}$$

Bayes' Theorem:

$$p(HIV|P) = \frac{p(P|HIV) p(HIV)}{p(P)}$$

$$= \frac{p(P|HIV) p(HIV)}{p(P|HIV) p(HIV) + p(P|\neg HIV) p(\neg HIV)}$$

Bayes' Theorem:

$$p(HIV|P) = \frac{p(P|HIV) p(HIV)}{p(P)}$$

$$= \frac{p(P|HIV) p(HIV)}{p(P|HIV) p(HIV) + p(P|\neg HIV) p(\neg HIV)}$$

$$=\left(1+rac{\mathsf{p}(\mathsf{P}|\neg\mathsf{HIV})}{\mathsf{p}(\mathsf{HIV})}\left(1-\mathsf{p}(\mathsf{HIV})
ight)
ight)^{-\frac{1}{2}}$$

5

Base-Rate / Prosecutor's Fallacy

SIDS

• SIDS (sudden infant death syndrome)

- SIDS (sudden infant death syndrome)
- Sally Clark; both children, in 1996 and 1998, died of SIDS

- SIDS (sudden infant death syndrome)
- Sally Clark; both children, in 1996 and 1998, died of SIDS
- Prosecutor: "The chance for that is only one in 73 Million, so she killed them!"

- SIDS (sudden infant death syndrome)
- Sally Clark; both children, in 1996 and 1998, died of SIDS
- Prosecutor: "The chance for that is only one in 73 Million, so she killed them!"
- She was tried and convicted, spent three years in prison before her eventual acquittal

• Probability closer to one in 300,000

- Probability closer to one in 300,000
- Prosecutor's fallacy: $p(A|B) \neq p(B|A)$

- Probability closer to one in 300,000
- Prosecutor's fallacy: $p(A|B) \neq p(B|A)$
- Probability of her having killed them about 10%

Base-Rate / **Prosecutor's Fallacy**

p-Values

• p-Value = $p(Data|Null) \neq p(Null|Data)$

- p-Value = $p(Data|Null) \neq p(Null|Data)$
- "Extraordinary claims require extraordinary evidence"

p-Values

p-Values

 $p \approx 1/400 = 0.0025 < 0.05$

Gambler's / Hot-Hand Fallacy

Monte Carlo 1913

Gambler's / Hot-Hand Fallacy

Useless Advice

• 400 undergraduate students bet on the outcome of coin flips
- 400 undergraduate students bet on the outcome of coin flips
- It was completely obvious that the outcome was only determined by chance

- 400 undergraduate students bet on the outcome of coin flips
- It was completely obvious that the outcome was only determined by chance
- They were given a prediction for every round, and could pay to open it before the coin toss

- 400 undergraduate students bet on the outcome of coin flips
- It was completely obvious that the outcome was only determined by chance
- They were given a prediction for every round, and could pay to open it before the coin toss
- They were always told to open it after every toss

• Bonferroni correction: α significance threshold, m comparisons

- \bullet Bonferroni correction: α significance threshold, m comparisons
- Use $\beta = \alpha/m$ as new threshold

- \bullet Bonferroni correction: α significance threshold, m comparisons
- Use $\beta = \alpha/m$ as new threshold
- Here, this would mean p < 0.0003

- \bullet Bonferroni correction: α significance threshold, m comparisons
- Use $\beta = \alpha/m$ as new threshold
- Here, this would mean p < 0.0003
- Very conservative

15

Hindsight Bias

Captain Hindsight

Hindsight Bias

Clinicopathologic Conferences

• A presenter goes through an old case, presents the medical information and possible diagnoses

- A presenter goes through an old case, presents the medical information and possible diagnoses
- Afterwards, the pathologist announces the real diagnosis

- A presenter goes through an old case, presents the medical information and possible diagnoses
- Afterwards, the pathologist announces the real diagnosis
- 4 cases, 2 easier, 2 harder

- A presenter goes through an old case, presents the medical information and possible diagnoses
- Afterwards, the pathologist announces the real diagnosis
- 4 cases, 2 easier, 2 harder
- 160 (total) physicians were asked to estimate the prior probabilities for the diagnoses either in foresight or in hindsight

• "[...] *p* = 0.06, which fell just short of the traditionally accepted significance level."

- "[...] p = 0.06, which fell just short of the traditionally accepted significance level."
- Again, p < 0.05 but multiple comparisons were done

- "[...] *p* = 0.06, which fell just short of the traditionally accepted significance level."
- Again, p < 0.05 but multiple comparisons were done
- "[...] among the three groups that demonstrated the bias, 75% of hindsight physicians have higher estimates [...]. A 50% rate would be expected by chance alone."

- "[...] *p* = 0.06, which fell just short of the traditionally accepted significance level."
- Again, p < 0.05 but multiple comparisons were done
- "[...] among the three groups that demonstrated the bias, 75% of hindsight physicians have higher estimates [...]. A 50% rate would be expected by chance alone."
- Three groups: $30\% \rightarrow 50\%$

- "[...] *p* = 0.06, which fell just short of the traditionally accepted significance level."
- Again, p < 0.05 but multiple comparisons were done
- "[...] among the three groups that demonstrated the bias, 75% of hindsight physicians have higher estimates [...]. A 50% rate would be expected by chance alone."
- Three groups: $30\% \to 50\%$
- All: $35\% \rightarrow 45\%$

- "[...] *p* = 0.06, which fell just short of the traditionally accepted significance level."
- Again, p < 0.05 but multiple comparisons were done
- "[...] among the three groups that demonstrated the bias, 75% of hindsight physicians have higher estimates [...]. A 50% rate would be expected by chance alone."
- Three groups: $30\% \rightarrow 50\%$
- All: $35\% \rightarrow 45\%$
- Used the value for three groups in their abstract, but without the caveat!

- "[...] *p* = 0.06, which fell just short of the traditionally accepted significance level."
- Again, p < 0.05 but multiple comparisons were done
- "[...] among the three groups that demonstrated the bias, 75% of hindsight physicians have higher estimates [...]. A 50% rate would be expected by chance alone."
- Three groups: $30\% \rightarrow 50\%$
- All: $35\% \rightarrow 45\%$
- Used the value for three groups in their abstract, but without the caveat!
- $N \approx 20$ for every value in plot

CPC

Hindsight Bias

Determinations of Negligence

• Sent a case study and questions to random addresses, 300 replied

- Sent a case study and questions to random addresses, 300 replied
- Six different cases, describing how a therapist reacted to a potentially violent patient

- Sent a case study and questions to random addresses, 300 replied
- Six different cases, describing how a therapist reacted to a potentially violent patient
- They varied whether they reported any outcome, and if, whether violence did or did not occur

- Sent a case study and questions to random addresses, 300 replied
- Six different cases, describing how a therapist reacted to a potentially violent patient
- They varied whether they reported any outcome, and if, whether violence did or did not occur
- Participants were asked to judge, as a juror, whether the therapist was negligent
Negligence

■Violent■Not Specified■Not Violent

Negligence

U Violent II Not Specified II Not Violent

References

- Neal V. Dawson et al. "Hindsight Bias: An Impediment to Accurate Probability Estimation in Clinicopathologic Conferences". In: *Medical Decision Making* 8.4 (1988).
 - Jordan Ellenberg. How not to be wrong. London: Penguin Books, 2015.
 - Ray Hill. "Multiple sudden infant deaths coincidence or beyond coincidence?" In: *Paediatric and Perinatal Epidemiology* 18.5 (2004).
 - Susan J LaBine and Gary LaBine. "Determinations of Negligence and the Hindsight Bias". In: *Law and Human Behavior* 20.5 (1996).
 - Nattavudh Powdthavee and Yohanes E Riyanto. "Would you Pay for Transparently Useless Advice? A Test of Boundaries of Beliefs in The Folly of Predictions". In: *Review of Economics and Statistics* 97.2 (2015).

Confirmed Judges in First Congressional Term [NYTimes, 2018]

