Fallacies of Reasoning

How We Fool Ourselves

Valentin Wüst
$7^{\text {th }}$ November, 2019

Table of Contents

1. Base-Rate / Prosecutor's Fallacy
2. Gambler's / Hot-Hand Fallacy
3. Hindsight Bias

Base-Rate / Prosecutor's Fallacy

Introduction

- "Humans are 54\% accurate at recognizing lies."

Introduction

- "Humans are 54\% accurate at recognizing lies."
- What is the corresponding base-rate of lies?

Base-Rate / Prosecutor's Fallacy

HIV Self-Test

HIV Self-Test

- Sensitivity, p(P|HIV): 100%

HIV Self-Test

- Sensitivity, p(P|HIV): 100%
- Specificity, $\mathrm{p}(\mathrm{N} \mid \neg \mathrm{HIV}): 99.8 \%$

HIV Self-Test

- Sensitivity, p(P|HIV): 100\%
- Specificity, p(N|ᄀHIV): 99.8\%

	HIV Positive	HIV Negative
Positive	1	0.002
Negative	0	0.998

HIV Self-Test

- Sensitivity, p(P|HIV): 100\%
- Specificity, $\mathrm{p}(\mathrm{N} \mid \neg \mathrm{HIV}): 99.8 \%$

	HIV Positive	HIV Negative
Positive	1	0.002
Negative	0	0.998

- "Accuracy greater than 99\%"

HIV Self-Test

- Sensitivity, p(P|HIV): 100\%
- Specificity, $\mathrm{p}(\mathrm{N} \mid \neg \mathrm{HIV}): 99.8 \%$

	HIV Positive	HIV Negative
Positive	1	0.002
Negative	0	0.998

- "Accuracy greater than 99\%"
- " [...] test result is positive. You are probably HIV positive."

HIV Self-Test

- Sensitivity, p(P|HIV): 100\%
- Specificity, $\mathrm{p}(\mathrm{N} \mid \neg \mathrm{HIV}): 99.8 \%$

	HIV Positive	HIV Negative
Positive	1	0.002
Negative	0	0.998

- "Accuracy greater than 99\%"
- " [...] test result is positive. You are probably HIV positive."
- "This means a positive result will be correct 998 out of every 1000 tests."

HIV Self-Test

Bayes' Theorem:

$$
\mathrm{p}(\mathrm{HIV} \mid \mathrm{P})=\frac{\mathrm{p}(\mathrm{P} \mid \mathrm{HIV}) \mathrm{p}(\mathrm{HIV})}{\mathrm{p}(\mathrm{P})}
$$

HIV Self-Test

Bayes' Theorem:

$$
\begin{aligned}
\mathrm{p}(\mathrm{HIV} \mid \mathrm{P}) & =\frac{\mathrm{p}(\mathrm{P} \mid \mathrm{HIV}) \mathrm{p}(\mathrm{HIV})}{\mathrm{p}(\mathrm{P})} \\
& =\frac{\mathrm{p}(\mathrm{P} \mid \mathrm{HIV}) \mathrm{p}(\mathrm{HIV})}{\mathrm{p}(\mathrm{P} \mid \mathrm{HIV}) \mathrm{p}(\mathrm{HIV})+\mathrm{p}(\mathrm{P} \mid \neg \mathrm{HIV}) \mathrm{p}(\neg \mathrm{HIV})}
\end{aligned}
$$

HIV Self-Test

Bayes' Theorem:

$$
\begin{aligned}
p(\mathrm{HIV} \mid \mathrm{P}) & =\frac{\mathrm{p}(\mathrm{P} \mid \mathrm{HIV}) \mathrm{p}(\mathrm{HIV})}{\mathrm{p}(\mathrm{P})} \\
& =\frac{\mathrm{p}(\mathrm{P} \mid \mathrm{HIV}) \mathrm{p}(\mathrm{HIV})}{\mathrm{p}(\mathrm{P} \mid \mathrm{HIV}) \mathrm{p}(\mathrm{HIV})+\mathrm{p}(\mathrm{P} \mid \neg \mathrm{HIV}) \mathrm{p}(\neg \mathrm{HIV})} \\
& =\left(1+\frac{\mathrm{p}(\mathrm{P} \mid \neg \mathrm{HIV})}{\mathrm{p}(\mathrm{HIV})}(1-\mathrm{p}(\mathrm{HIV}))\right)^{-1}
\end{aligned}
$$

HIV Self-Test

HIV Self-Test

HIV Self-Test

Base-Rate / Prosecutor's Fallacy

SIDS

SIDS

- SIDS (sudden infant death syndrome)

SIDS

- SIDS (sudden infant death syndrome)
- Sally Clark; both children, in 1996 and 1998, died of SIDS

SIDS

- SIDS (sudden infant death syndrome)
- Sally Clark; both children, in 1996 and 1998, died of SIDS
- Prosecutor: "The chance for that is only one in 73 Million, so she killed them!"

SIDS

- SIDS (sudden infant death syndrome)
- Sally Clark; both children, in 1996 and 1998, died of SIDS
- Prosecutor: "The chance for that is only one in 73 Million, so she killed them!"
- She was tried and convicted, spent three years in prison before her eventual acquittal

SIDS

- Probability closer to one in 300,000

SIDS

- Probability closer to one in 300,000
- Prosecutor's fallacy: $p(A \mid B) \neq p(B \mid A)$

SIDS

- Probability closer to one in 300,000
- Prosecutor's fallacy: $p(A \mid B) \neq p(B \mid A)$
- Probability of her having killed them about 10%

Base-Rate / Prosecutor's Fallacy

p-Values

- p - Value $=p($ Data \mid Null $)$

p-Values

- p -Value $=\mathrm{p}($ Data \mid Null $) \neq \mathrm{p}($ Null \mid Data $)$
- p -Value $=\mathrm{p}($ Data \mid Null $) \neq \mathrm{p}($ Null \mid Data $)$
- "Extraordinary claims require extraordinary evidence"

p-Values

$$
\begin{aligned}
& \text { 웅․․․․․․․․․․․․․․ } \\
& \text { 웁․․․․․․․․․․․․․․ }
\end{aligned}
$$

$$
\begin{aligned}
& p \approx 1 / 400=0.0025<0.05
\end{aligned}
$$

Gambler's / Hot-Hand Fallacy

Monte Carlo 1913

Gambler's / Hot-Hand Fallacy

Useless Advice

Useless Advice

- 400 undergraduate students bet on the outcome of coin flips

Useless Advice

- 400 undergraduate students bet on the outcome of coin flips
- It was completely obvious that the outcome was only determined by chance

Useless Advice

- 400 undergraduate students bet on the outcome of coin flips
- It was completely obvious that the outcome was only determined by chance
- They were given a prediction for every round, and could pay to open it before the coin toss

Useless Advice

- 400 undergraduate students bet on the outcome of coin flips
- It was completely obvious that the outcome was only determined by chance
- They were given a prediction for every round, and could pay to open it before the coin toss
- They were always told to open it after every toss

Useless Advice

THAT SETLES THAT.
I HEAR IT'S ONLY A CERTAIN COLOR THAT CAUSES IT.

Useless Advice

Useless Advice

- Bonferroni correction: α significance threshold, m comparisons

Useless Advice

- Bonferroni correction: α significance threshold, m comparisons
- Use $\beta=\alpha / m$ as new threshold

Useless Advice

- Bonferroni correction: α significance threshold, m comparisons
- Use $\beta=\alpha / m$ as new threshold
- Here, this would mean $p<0.0003$

Useless Advice

- Bonferroni correction: α significance threshold, m comparisons
- Use $\beta=\alpha / m$ as new threshold
- Here, this would mean $p<0.0003$
- Very conservative

Useless Advice

$$
\|p<0.1\|\|p<0.05\| p<0.01
$$

Useless Advice

Hindsight Bias

Captain Hindsight

Hindsight Bias

Clinicopathologic Conferences

CPC

- A presenter goes through an old case, presents the medical information and possible diagnoses

CPC

- A presenter goes through an old case, presents the medical information and possible diagnoses
- Afterwards, the pathologist announces the real diagnosis
- A presenter goes through an old case, presents the medical information and possible diagnoses
- Afterwards, the pathologist announces the real diagnosis
- 4 cases, 2 easier, 2 harder

CPC

- A presenter goes through an old case, presents the medical information and possible diagnoses
- Afterwards, the pathologist announces the real diagnosis
- 4 cases, 2 easier, 2 harder
- 160 (total) physicians were asked to estimate the prior probabilities for the diagnoses either in foresight or in hindsight

CPC

CPC

- "[..] $p=0.06$, which fell just short of the traditionally accepted significance level."

CPC

- "[..] $p=0.06$, which fell just short of the traditionally accepted significance level."
- Again, $p<0.05$ but multiple comparisons were done

CPC

- "[..] $p=0.06$, which fell just short of the traditionally accepted significance level."
- Again, $p<0.05$ but multiple comparisons were done
- "[..] among the three groups that demonstrated the bias, 75% of hindsight physicians have higher estimates [...]. A 50% rate would be expected by chance alone."

CPC

- "[..] $p=0.06$, which fell just short of the traditionally accepted significance level."
- Again, $p<0.05$ but multiple comparisons were done
- "[..] among the three groups that demonstrated the bias, 75% of hindsight physicians have higher estimates [...]. A 50% rate would be expected by chance alone."
- Three groups: $30 \% \rightarrow 50 \%$

CPC

- " $[\ldots] p=0.06$, which fell just short of the traditionally accepted significance level."
- Again, $p<0.05$ but multiple comparisons were done
- "[..] among the three groups that demonstrated the bias, 75% of hindsight physicians have higher estimates [...]. A 50% rate would be expected by chance alone."
- Three groups: $30 \% \rightarrow 50 \%$
- All: $35 \% \rightarrow 45 \%$

CPC

- " $[\ldots] p=0.06$, which fell just short of the traditionally accepted significance level."
- Again, $p<0.05$ but multiple comparisons were done
- "[..] among the three groups that demonstrated the bias, 75% of hindsight physicians have higher estimates [...]. A 50% rate would be expected by chance alone."
- Three groups: $30 \% \rightarrow 50 \%$
- All: $35 \% \rightarrow 45 \%$
- Used the value for three groups in their abstract, but without the caveat!

CPC

- " $[\ldots] p=0.06$, which fell just short of the traditionally accepted significance level."
- Again, $p<0.05$ but multiple comparisons were done
- "[...] among the three groups that demonstrated the bias, 75% of hindsight physicians have higher estimates [...]. A 50% rate would be expected by chance alone."
- Three groups: $30 \% \rightarrow 50 \%$
- All: $35 \% \rightarrow 45 \%$
- Used the value for three groups in their abstract, but without the caveat!
- $N \approx 20$ for every value in plot

CPC

CPC

CPC

Hindsight Bias

Determinations of Negligence

Negligence

- Sent a case study and questions to random addresses, 300 replied

Negligence

- Sent a case study and questions to random addresses, 300 replied
- Six different cases, describing how a therapist reacted to a potentially violent patient

Negligence

- Sent a case study and questions to random addresses, 300 replied
- Six different cases, describing how a therapist reacted to a potentially violent patient
- They varied whether they reported any outcome, and if, whether violence did or did not occur

Negligence

- Sent a case study and questions to random addresses, 300 replied
- Six different cases, describing how a therapist reacted to a potentially violent patient
- They varied whether they reported any outcome, and if, whether violence did or did not occur
- Participants were asked to judge, as a juror, whether the therapist was negligent

Negligence

|IViolent|l|Not SpecifiedIINot Violent

Negligence

References

目
Neal V. Dawson et al. "Hindsight Bias: An Impediment to Accurate Probability Estimation in Clinicopathologic Conferences". In: Medical Decision Making 8.4 (1988).

Jordan Ellenberg. How not to be wrong. London: Penguin Books, 2015.
Ray Hill. "Multiple sudden infant deaths - coincidence or beyond coincidence?" In: Paediatric and Perinatal Epidemiology 18.5 (2004).
Susan J LaBine and Gary LaBine. "Determinations of Negligence and the Hindsight Bias". In: Law and Human Behavior 20.5 (1996).
Nattavudh Powdthavee and Yohanes E Riyanto. "Would you Pay for Transparently Useless Advice? A Test of Boundaries of Beliefs in The Folly of Predictions". In: Review of Economics and Statistics 97.2 (2015).

Confirmed Judges in First Congressional Term [NYTimes, 2018]

