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1 Generative Adversarial Network

This chapter will cover the fundamentals of a generative adversarial network (GAN) on which

InfoGAN is built on. The method is explained in 1.1, in 1.2 a few results and applications are

presented and discussed.

1.1 Approach

GAN was proposed in “Generative adversarial nets”[4] by Goodfellow, Pouget-Abadie, Mirza, Xu,

Warde-Farley, Ozair, Courville, and Bengio. It is a method of estimating a generative model, a gen-

erator is trained to produce samples based on the training dataX . While discriminative models

are models of the conditional probability P (Y |X = x), a generative model is a model of the
conditional probabiility P (X|Y = y).
In GAN the generator is trained with the help of an adversary, a discriminative model. Both

models are multilayer perceptrons and essentially compete against each other. This competition

results in the optimization of both parties. The generatorG generates samples x̂ = G(z) with a
noise input vector z. The noise vector is based on an arbitrary noise distribution Pnoise(z). The
discriminatorD tries to distinguish between the original dataX and the data X̂ that is generated

byG. The outpout ofD(x) is the probability of x being from the true data distribution Pdata

rather than from the generators distribution Pgenerator. Therefore D(x) ∈ [0, 1]. Figure 1.1
displays the structure of GAN and the the two models.

Figure 1.1: A display of the structure of GAN. Random noise is used to generate data with G. D then

attempts to distinguish the generated data from the real data.

The real world analogy to this competition of the generator and the discriminator is a team

of counterfeiters producing fake currency while investigators try to distinguish the fake money

from real money. In this competition, the counterfeiters keep improving their method to fool the

investigators. The investigators in turn also have to improve, so they can identify the fake money

that keeps getting harder to distinguish from the real thing. This competition ends when the fake

money and the real money are indistinguishable.
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1 Generative Adversarial Network

To implement this competition for the generator G and the discriminator D, they are opti-

mized through the minimax game given by

min
G

max
D

V (D,G) = Ex∼Pdata
[logD(x)] + Ez∼Pnoise [log (1−D(G(z)))]. (1.1)

The generatorG is trained by minimizing equation 1.1, the discriminator by maximizing it.

The first term in the equation becomes 0whenD perfectly distinguishes between real and fake

data. In the case where x ∼ Pdata, the expected value of D(x) is 1, therefore logD(x) = 0.
WhenD makes imperfect predictions, the expected value ofD(x) is smaller than 1, resulting in
a negative expected value for logD(x).
The second term of the equation becomes 0 in the same scenario. In the case of z ∼ Pnoise,

meaning G(z) ∼ Pgenerator, the expected value ofD(G(z)) is 0 if the discriminator correctly
identifies thedata as being fake and1 if the generateddata is falsely classified as real. Whenperfectly

identifying the generated data, the expected value for (1−D(G(z))) therefore is 1. The expected
value of its logarithm log (1−D(G(z))) is then 0. When the discriminatorD is fooled by the

generatorG, the worst case is pure guessing, this results in an expected value of 1
2 forD(G(z)).

So the second termbecomes negative whenG creates samples thatD cannot distinguish from real

data. In general, the optimal discriminator isD(x) = Pdata(x)
Pdata(x)+Pgenerator(x)

.

In other words, the two models compete against each other in the second term. The generator

attempts to minimize it while the discriminator tries to maximize it. The first term ensures that

the discriminator does not simply classify all input as false data. Figure 1.2 displays the relevant

distributions of GAN at different steps of the iterative process.

1.2 Results

In this section some interesting results that are generated with generative adversarial networks

are discussed. In Figure 1.3 each of the ten rows displays the linear interpolation through the

domain ofPnoise, orZ , between two images that are generated with the trained generatorG(z).
In essence, a traversal through the space of Z between two points is displayed in each row. Some

interesting behaviour can be observed. It is important to note that all images that are created from

the interpolated vectors in the Z-space can also be seen as proper bedrooms. Additionally they
can be observed to smoothly transition within each row. Especially row six and row ten provide

interesting insights. In row six a lamp can be seen to slowly transition into a window that grows

in size. In row ten the same thing happens wit a TV until it can also be identified as a window.

Similar scenarios can be observed in the other rows. Objects slowly transform when traversing in

theZ-space.

2



1 Generative Adversarial Network

(a) (b) (c) (d)

Figure 1.2: A representation of the distribution of the original data Pdata (black dotted line) and the dis-

tribution of the generated data Pgenerator (green line). Both distributions are displayed in the

domain ofX , the arrows indicate sampling from Z and mapping toX with x̂ = G(z). The
descriminators decision is also visualized (blue dashed line). (a) displays a step close to conver-

gence in the iterative process. The distribution Pgenerator overlaps with the real distribution

Pdata. The descriminator still distinguishes the the generated data fairly well. In (b) the dis-

criminator is updated, converging to
Pdata(x)

Pdata(x)+Pgenerator(x)
. In (c) the generatorG is updated

and now generates a distribution that is a lot closer to the orignial data. In (d), after more steps,

the generators distribution Pgenerator has converged to the real data distribution Pdata. The

discriminators best option is now guessing as
Pdata(x)

Pdata(x)+Pgenerator(x)
= 1

2 .

image from “Generative adversarial nets”[4]

More interestingly, Figure 1.4 shows how vector arithmetic can be performed within the

noise/feature space Z . in Figure 1.4(a) the mean noise vector of a neutral woman is subtracted
from the mean noise vector of a smiling woman. The idea is to extract the vector responsible for

adding the smile. Having obtained this vector, it is added to the noise vector of a neutral man.

Interestingly enough, the resulting vector corresponds to images of a smiling man when fed into

the generatorG(z). The same is donewith the presence of glasses, in Figure 1.4(b) themean noise
vector of the existance of glasses in the image is extracted and used to create images of a woman

with glasses. As the representations produced by GAN are in general highly entangled, this is not

guaranteed to work. The vector that adds glasses to a man is not necessarily the same as the one

that adds glasses to a woman.
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1 Generative Adversarial Network

Figure 1.3: Each row is based on two generated images that are generated throughG(z) with the random
noise vector z ∼ Pnoise. These two images are the leftmost and rightmost image in each row.

The images inbetween are generatedby interpolating between the twovectorswithin the feature

space Z and then generating images from the resulting noise vectors, essentially tracing a path

through the feature space.

image from “Unsupervised representation learning with deep convolutional

generative adversarial networks”[5]
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1 Generative Adversarial Network

(a)

(b)

Figure 1.4: From a collection of generated images (collumns of three images), the mean vector within the

feature spaceZ is calculated (indicated below those collumns). With these mean vectors, vector

arithmetic is performed within the feature space. The resulting vector has some noise added to

it to generate a collection of images (nine images on the right). (a) and (b) display the results for

calculating the vectors within the feature space that correspond to a smiling man and a woman

with glasses respectively.

image from “Unsupervised representation learning with deep convolutional

generative adversarial networks”[5]

5



2 InfoGAN

This chapter startswith a brief explanation for themotivation of InfoGAN,which expandsGAN,

before elaborating on the approach and implementation. Afterwards a variety of results are dis-

played and discussed.

2.1 Motivation for InfoGAN

As briefly mentioned in Section 1.2, the representations generated by GAN are generally highly

entangled. Instead of extracting vectors in the noise space Z that are responsible for specific fea-

tures, having clear parameters for those features is desired. In other words, a disentangled repre-

sentation of the feature space Z . In Figure 2.1 the idea of an entangled and a disentangled noise
space is conveyed. In Figure 2.1(a) it can be hard to describe the exact areas of specific features as

they are entangled. But in Figure 2.1(b) the same feature space is represented in a disentangled

manner. The boundaries between relevant features are easily indentifyable and only dependant

on one axis.

To bring this into perspective, applying this concept to the vector arithmetic performed in Fig-

ure 1.4, instead of extracting a vector for glasses, the area within the feature space that creates

images of men and the area that creates images of women could be clearly seperated. The area

for images of men could then be split into two areas, one for men with and one for men without

glasses. In the entangled representation there could be multiple clusters with the same important

feature that are spread out arbitrarily far.

(a) (b)

Figure 2.1: A visualization of a two-dimensional feature space. (a) is an entangled representation. (b) is a

disentangled representation, the y axis can be observed to essentially be a feature dimension.
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2 InfoGAN

As the focus will lie on the MNIST dataset to explain the concepts of InfoGAN, Figure 2.2

displays the same concept of interpolating within the noise space that was used for the bedrooms

in Figure 1.3. In Figure 2.2(a) and (b) a one slowly transitions into a five and a seven slowly tran-

sitions into a one. In the latter, the path through the feature space appears to pass an area of a

nine.

Themotivation for InfoGAN is the desire for a disentangled representation in the feature space

that allows for the targeted generation of data with specific features. For example, generating only

one type of digit with a generator trained on theMNIST dataset. While the digit type is the most

obvious feature that can be distinguished, there are other features that may be of interest. For

example the stroke thickness of the digits.

(a)

(b)

Figure 2.2: Interpolation of noise vectors z in the feature space from left to right. (a) displays a one being

transformed to a five. (b) displays a seven transforming into a one.

image from “Generative adversarial nets”[4]

2.2 Approach

The ideawith InfoGAN is tomodify the input vector of the generatorG. Instead of just using the
noise vector z as in GAN, latent code is added to the noise vector. The generator now generates

samples based on a combination of noise and user specified latent code c. The generator therefore
changes fromG(z) toG(z, c). In the case ofMNIST, the latent code c is modeled to contain one
uniform categorical code with ten possible categories. This is chosen because of the ten different

digits present in MNIST. Additionally two uniform continuous codes are added.

The problem with normal GAN is that the latent code can be ignored by the network by find-

ing the trivial solution of Pgenerator(x|c) = Pgenerator(x). To force the network to make use
of the latent code, the minimax game given by Equation 1.1 is modified to ensure high mutual

information between the latent code and the generated samples. Mutual information between

two variables can be expressed through the change in entropy when gaining knowledge of one

variable:

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X). (2.1)

It can be observed that I(X;Y ) is zerowhen the entropy ofX stays the same after gaining knowl-

edge of Y , in other words there is no mutual information betweenX and Y .
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2 InfoGAN

For the case of the generator and the samples it generates, the mutual information between the

latent code and the samples should be maximal. So I(c|G(z, c) should be maximal. In other

words, knowing x should provide information about c and knowing c should provide informa-
tion about x. So for any given x ∼ Pgenerator, the entropy of Pgenerator(c|x) should be min-
imal. In the case of MNIST, an image of a certain digit should strongly correlate to one specific

category of the categorical latent code.

As to retain thismaximalmutual information, theminimax game as defined inGAN(see Equa-

tion 1.1) should be modified with an additional term:

min
G

max
D

VI(D,G) = V (D,G)− λI(c;G(z, c)). (2.2)

λ is a mere factor. With this term, the network is forced tomake use of the latent code as maximal

mutual information between the latent code and the produced samples is ensured.

In practice it is difficult to calculate I(c;G(z, c)) as it requires the posterior probability
Pgenerator(c|x). Making use of variational information maximization [1], a lower bound for the

mutual information is found with an auxiliary distributionQ(c|x):

I(c;G(z, c)) = H(c)−H(c|G(z, c))
= Ex∼G(z,c)[Ec′∼P (c|x)[logP (c

′|x)]] +H(c)

= Ex∼G(z,c)[DKL(P (·|x)||Q(·|x)) + Ec′∼P (c|x)[logQ(c′|x)]] +H(c)

≥ Ex∼G(z,c)[Ec′∼P (c|x)[logQ(c′|x)]] +H(c)

(2.3)

With this lower bound, the posterior probability does not need to be calculated explicitly, but a

sampling from the posterior probability is still required in the inner expectation. To avoid this,

Equation 2.3 can be further reformulated to define a variational lower boundLI :

LI(G,Q) = Ec∼P (c),x∼G(z,c)[logQ(c|x)] +H(c)

≥ I(c;G(z, c))
(2.4)

This variational lower bound LI(G,Q) can easily be approximated by Monte Carlo simulation.

H(c) can be assumed to be constant with a fixed latent code distribution. As the auxiliary dis-
tributionQ approaches the real distribution P (c|x), the expected value of the ommited term in

Equation 2.3 becomes zero:

Ex∼G(z,c)[DKL(P (·|x)||Q(·|x))]→ 0 (2.5)

With this, the lower bound becomes tight. The final form of the modified minimax game is

min
G,Q

max
D

V
InfoGAN

(D,G,Q) = V (D,G)− λLI(G,Q). (2.6)

As the mutual information should be maximal,G andQ are trained by trying to maximize it in

Equation 2.6. As the lower bound of the mutual information is subtracted, the whole term is

to be minimized byG andQ. D has no direct impact on the mutual information. Considering
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2 InfoGAN

Equation 2.1, the mutual information will be between zero andH(c). If the mutual information
is equal toH(c), it is maximal.
In practice, the auxiliary distribution Q does not require its own neural network and instead

manifests in one additional fully connected layer that is added to the network of the discriminator

D. The resulting structure of InfoGAN compared to normal GAN can be seen in Figure 2.3.

(a) (b)

Figure 2.3: (a) and (b) display the structure of GAN and InfoGAN respectively. The addition of latent

code to the generator input can be observed while the distributors network is used to approx-

imate the auxiliary distributionQ. In essence, c is estimated for each x (real or fake) through
the network ofD.

image from “UnderstandingMutual Information and its Use in InfoGAN”[3]

Figure 2.4: The lower bound LI over

many iterations for GAN

(green) and InfoGAN (blue).

image from [2]

Figure 2.4 displays the value of the lower bound over

many iterations. The green line visualizes themutual in-

formation duringGAN,when the network is not forced

to make use of the latent code. The blue line shows the

mutual information in InfoGAN,where the value func-

tion is modified to enforce highmutual information be-

tween the latent code and the generated samples. It can

be observed that during InfoGAN the mutual informa-

tion is quickly maximized and stays maximal. During

GANon the other hand, the latent code can be ignored,

as mutual information is not enforced. For these results

InfoGAN was used on the MNIST dataset with uni-

form categorical latent code c ∼ Cat(K = 10, p =
0.1).
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2 InfoGAN

2.3 Results

This sectionwill discuss the results generated by using InfoGANon a variety of different datasets.

Beginning with MNIST, the latent codes c were chosen to be the uniform categorical code

c1 ∼ Cat(K = 10, p = 0.1), and two uniform continuous latent codes c2, c3 ∼ Unif(−1, 1).
InfoGANcorrectly associates the digit typewith the categorical latent code and finds two interest-

ing features for the continuous code, a parameter for howmuch the digit is titled and a parameter

for the line thickness. Having acquired this disentangled representation, the generator and the

latent code can be used to generate specific images. For example a specific digit with a high line

thickness that is specifically tilted. Figure 2.5 illustrates the results of InfoGANonMNIST.While

the continuous codes c2 and c3 ranged from −1 to 1 during training, to emphasize their effect,
visualizations were made with it ranging from−2 to 2.

(a) (b)

(c) (d)

Figure 2.5: The noise z changes for each row while a specific latent code is gradually changed within the

row from left to right. The noise and other latent codes are fixed within each row. (a) shows a

varying c1 (digit type). (b) shows a varying c1 with regular GAN (no clear meaning). (c) shows

a varying c2 from−2 to 2 (rotation). (d) shows a varying c3 from−2 to 2 (line thickness).
image from “Infogan: Interpretable representation learning by information

maximizing generative adversarial nets”[2]

InfoGAN was also tested on 3D datasets of faces and chairs (see Figure 2.6 and 2.7). In both

cases interesting features have been recovered. For the dataset of faces, the pose, elevation, lighting

andwidth are extracted. On the chairs dataset, rotation andwidth are recovered. Figure 2.8 shows

results on a dataset of housenumbers. In Figure 2.9, for an unlabeled dataset of celebrity faces, ten

latent codes were chosen that each have ten dimensions.
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2 InfoGAN

(a) (b)

(c) (d)

Figure 2.6: The noise z changes for each row while a specific latent code is gradually changed within the

row from left to right. The noise and other latent codes are fixed within each row. For this

dataset, the latent codes were modeled with five continuous codes.

(a): azimuth (pose) (b): elevation (c): lighting (d): wide or narrow

image from “Infogan: Interpretable representation learning by information

maximizing generative adversarial nets”[2]

(a) (b)

Figure 2.7: Thenoise z changes for each rowwhile a specific latent code is gradually changedwithin the row

from left to right. The noise and other latent codes are fixed within each row. For this dataset,

the latent codes were modeled with four categorical 20-dimensional codes and one continuous

code.

(a): rotation (b): width

image from “Infogan: Interpretable representation learning by information

maximizing generative adversarial nets”[2]
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2 InfoGAN

(a) (b)

Figure 2.8: Thenoise z changes for each rowwhile a specific latent code is gradually changedwithin the row

from left to right. The noise and other latent codes are fixed within each row. For this dataset,

the latent codes were modeled with four categorical 10-dimensional codes and two continuous

codes.

(a): lighting (b): context (categorical latent code)

image from “Infogan: Interpretable representation learning by information

maximizing generative adversarial nets”[2]

(a) (b)

(c) (d)

Figure 2.9: The noise z changes for each row while a specific latent code is gradually changed within the

row from left to right. The noise and other latent codes are fixed within each row. For this

dataset ten categorical latent codes were chosen, each having ten dimensions.

(a): azimuth (pose) (b): presence of glasses (c): hair style (d): emotion

image from “Infogan: Interpretable representation learning by information

maximizing generative adversarial nets”[2]
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3 Conclusion

Chen,Duan,Houthooft, Schulman, Sutskever, andAbbeel successfully implemented a representation

learning algorithm that is based on GAN. Previous approaches have required supervision while

InfoGAN can operate on unlabeled data. As unlabeled data is plentiful, this new method proves

highly useful. While parameters are provided in the formof the latent codes, they are not required

to be connected to specific features manually. Instead, with InfoGAN the most relevant features

are extracted. With the optimizations of the initial approach, InfoGAN comes with little to no

cost compared to normal GAN. Interpretable representations have been achieved as shown in

Section 2.3. Compared to GAN, InfoGAN seems to provide obvious benefits. While the vector

arithmetic in the feature space enabled the calculation of some features in relation to others, In-

foGAN delivers a reliable disentangled representation in which the feature space is spanned by

relevant features.
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