Book of Why, part 2

Seminar: How to Lie with Statistics

Overview

- Paradoxes
- How to predict effects of interventions
- Counterfactuals
- Mediation

Berkson's Paradox

Successful Actors

Image 1

Berkson's Paradox

Skill

Looks

Success

Monty Hall Paradox

Image 2

Monty Hall Paradox

Image 3

Monty Hall Paradox

Monty Hall Paradox

- Variation of the problem where door opened is random

Monty Hall Paradox

Chosen Door	Door with Car	Opened Door	Outome if you Switch	Outcome if you Stay
1	1	2	Lose	Win
1	1	3	Lose	Win
1	2	2	Lose	Lose
1	2	3	Win	Lose
1	3	2	Win	Lose
1	3	3	Lose	Lose

\rightarrow Opened door does not convey information. Switching and Staying are equally valid strategies.

Monty Hall Paradox

Simpson's Paradox

	Control Group (No Drug)		Treatment Group (Took Drug)	
	Heart Attack	No Heart Attack	Heart Attack	No Heart Attack
Female	1	19	3	37
Male	12	28	8	12
Total	13	47	11	49

Simpson's Paradox

\rightarrow Confounder Bias!

Simpson's Paradox

	Control Group (No Drug)	Treatment Group (Took Drug)
	Heart Attack Rate in Percent	Heart Attack Rate in Percent
Female	5	7.5
Male	30	40
Total	17.5	23.75

The drug seems to increase the risk of a heart attack

Simpson's Paradox

	Control Group (No Drug)		Treatment Group (Took Drug)	
	Heart Attack	No Heart Attack	Heart Attack	No Heart Attack
	1	19	3	37
High Blood Pressure	12	28	8	12
Total	13	47	11	49

Simpson's Paradox

\rightarrow Even though the data is the same, the results differ depending on the model

Ascending To The $2^{\text {nd }}$ Rung

Tools that can be used to predict the effects of intervention:

- Back-Door Adjustment
- Front-Door Adjustment
- Instrumental Variables
- Do-Calculus

Back-Door Adjustment

- Adjust for all confounders
- Split data in groups where units have same values for confounders
- Estimate the effect for each group and then calculate the weighted average of all groups

Front-Door Adjustment

- Allows elimination of unobservable confounders
- Requires a mediator

Front-Door Adjustment

Adjust for Smoking and Tar. Probability of Smoking to cause Lung Cancer = $P($ tar | smoking) * P (lung cancer | tar)

Image 4

Instrumental Variables

Instrumental Variables

Miasma, Poverty, etc.

Water Company

Water Purity

Cholera

Instrumental Variables

Correlation between Water Company and Cholera $=a b$
Correlation between Water Company and Water Purity $=a$
Causal Effect of Water Purity on Cholera $=a b / a=b$

Do-Calculus

Allows to reshape expressions that use the dooperator into ones that can be calculated with only observational data

Do-Calculus

3 Rules:

1. Allows deletion of a variable W that has no effect on the outcome:
$P(Y \mid \operatorname{do}(X), Z, W)=P(Y \mid \operatorname{do}(X), Z)$

Do-Calculus

2. Allows transformation of do(X) to see(X), if a variable Z, that is controlled for, blocks all backdoor paths:
$\mathrm{P}(\mathrm{Y} \mid \mathrm{do}(\mathrm{X}), \mathrm{Z})=\mathrm{P}(\mathrm{Y} \mid \mathrm{X}, \mathrm{Z})$

Do-Calculus

3. Allows removal of do(x), if there are no causal paths from X to Y :
$P(Y \mid d o(X))=P(Y)$

Counterfactuals

- Calculate difference in outcome Y if value of an effect X would have been different
- Probability of Necessity and Sufficiency

Counterfactuals

Employee	Experience	Education	Salary0	Salary1	Salary2
Alice	6	0	$\$ 81,000$	$?$	$?$
Bert	9	1	$?$	$\$ 92,500$	$?$
Caroline	9	2	$?$	$?$	$\$ 97,000$
David	8	1	$?$	$\$ 91,000$	$?$
Ernest	12	1	$?$	$\$ 100,000$	$?$
Frances	13	0	$\$ 97,000$	$?$	$?$

Education Levels:
0 = High School
1 = College
2 = Graduate

Counterfactuals

Counterfactuals

S = \$65,000 + \$2,500 * Experience + \$5,000 * Education $+U_{s}$
U_{s} is a variable that stands for any unobservable effects that affect salary but differ between individuals
Experience $=10-4$ *ED $+U_{e x}$

Counterfactuals

- Use data to calculate the unobservable factors from the data
- $\mathrm{U}_{\mathrm{s}}($ Alice $)=\$ 1,000$
- $U_{e x}($ Alice $)=-4$
- Change the model: Education(Alice) $=1$
- Calculate salary: Sed=1 (Alice) $=\$ 65,000+$ $\$ 2,500$ * $2+\$ 5,000$ * $1+\$ 1,000=\$ 76,000$
\rightarrow Going to college is clearly not worth it!

Necessary and Sufficient Causes

- Legal „but-for" principle asks how necessary the actions of the accused were for the result
- PN: Probability of Necessity
- PS: Probability of Sufficiency

Necessary and Sufficient Causes

Soldier 1

Soldier 2

Prisoner

$$
\begin{aligned}
& P N=0 \\
& P S=1
\end{aligned}
$$

Necessary and Sufficient Causes

Soldier 1
Soldier 2

Prisoner

$$
P N=1
$$

$$
P S=1
$$

Necessary and Sufficient Causes

Soldier 1
-

$$
\mathrm{PN}=1-\mathrm{p} 2
$$

$$
P S=1
$$

Necessary and Sufficient Causes

- Application of PN and PS in Climate Attribution Science
- Alexis Hannart: climate change has a PN of 0.9 and PS of 0.0072 for the 2003 European heat wave
- When looking at a longer time period, PS increases and PN decreases

Necessary and Sufficient Causes

Climate Change

Internal Variability

Climate Response

Necessary and Sufficient Causes

Image 6

Mediation: Defining of Direct and Indirect Effects

- Simple for linear models: Total Effect = Direct Effect + Indirect Effect

Mediation: Defining of Direct and Indirect Effects

Outcome $=7+2$ * $3=13$

Mediation: Defining of Direct and Indirect Effects

Applicant takes job if salary > 10
For Education = 1, Salary is $13 \rightarrow$ Outcome $=1$
However, isolated direct and indirect effects lead to Outcome $=0$

Mediation: Defining of Direct and Indirect Effects

- For nonlinear models, one must use counterfactuals
- Direct Effect: Change Cause X while holding Mediator M constant

$$
\begin{aligned}
D E= & P\left(Y_{M}=M_{0}=1 \mid \mathrm{do}(X=1)\right)- \\
& P\left(Y_{M}=M_{0}=1 \mid \operatorname{do}(X=0)\right)
\end{aligned}
$$

Mediation: Defining of Direct and Indirect Effects

- Indirect Effect: Change Mediator M while holding Cause X constant

$$
\begin{gathered}
\mathrm{IE}=\mathrm{P}\left(\mathrm{Y}_{\left.\mathrm{M}=\mathrm{M}_{1}=1 \mid \mathrm{do}(\mathrm{X}=0)\right)-}^{\mathrm{P}\left(\mathrm{Y}_{\mathrm{M}}^{2}=\mathrm{M}_{0}=1 \mid \mathrm{do}(\mathrm{X}=0)\right)}\right.
\end{gathered}
$$

Mediation: Calculating of Direct and Indirect Effects

Causality and AI

- Deep learning programs are very succesful, but similar to a blackbox
AlphaZero can't explain to humans, why it made a specific chess move
- Author's hope: Al that uses causal language can communicate with humans about the reasons of their actions

Sources

- Image 1: https://miro.medium.com/max/1088/1*c5BGrjbxszVGhALzwgPR4Q.png
- Image 2: https://www.norwegiancreations.com/wp-content/uploads/2018/10/montyhallproblem.png
- Image 3: https://qph.fs.quoracdn.net/main-qimg-7bc6bc567a79d8976796805553659f20.webp
- Image 4: https://upload.wikimedia.org/wikipedia/commons/2/27/Snow-cholera-map-1.jpg
- Image 5: https://d1w7fb2mkkr3kw.cloudfront.net/assets/images/book/lrg/9780/1419/9780141982410.jpg
- Image 6: https://climate.nasa.gov/system/internal_resources/details/original/1192_1309_consensus-graphic-2015-768px.jpg
- Pearl, Judea and Mackenzie, Dana. The Book of Why Penguin Books, 2019

